Higher Mathematics Practice Paper J Paper 1 Assessing Units 1, 2 & 3 NATIONAL QUALIFICATIONS

Read carefully

Calculators may <u>NOT</u> be used in this paper.

Time allowed - 1 hour 30 minutes

Section A - Questions 1 - 20 (40 marks)

Instructions for the completion of Section A are given on the next page.

For this section of the examination you should use an HB pencil.

Section B (30 marks)

- 1. Full credit will be given only where the solution contains appropriate working.
- 2. Answers obtained by readings from scale drawings will not receive any credit.

FORMULAE LIST

Circle:

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$. The equation $(x-a)^2 + (y-b)^2 = r^2$ represents a circle centre (a, b) and radius r.

Trigonometric formulae:	$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$
	$\cos(A\pm B) = \cos A\cos B \mp \sin A\sin B$
	$\sin 2A = 2\sin A \cos A$
	$\cos 2A = \cos^2 A - \sin^2 A$
	$= 2\cos^2 A - 1$
	$= 1 - 2 \sin^2 A$

Scalar Product: $a \cdot b = |a| |b| \cos \theta$, where θ is the angle between a and b.

or

$$\boldsymbol{a} \cdot \boldsymbol{b} = \boldsymbol{a}_1 \boldsymbol{b}_1 + \boldsymbol{a}_2 \boldsymbol{b}_2 + \boldsymbol{a}_3 \boldsymbol{b}_3$$
 where $\boldsymbol{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $\boldsymbol{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$

Table of standard derivatives:

f(x)	f'(x)
sin <i>ax</i>	$a\cos ax$
cos <i>ax</i>	$-a\sin ax$

Table of standard integrals:

f(x)	$\int f(x) dx$
sin <i>ax</i> cos <i>ax</i>	$-\frac{1}{a}\cos ax + C$ $\frac{1}{a}\sin ax + C$

SECTION A ALL questions should be attempted

1. A line has as its equation 3y = x + 6.

Any line parallel to this line will have as its gradient

- **A** -3 **B** 1 **C** $-\frac{1}{3}$ **D** $\frac{1}{3}$
- 2. If $f(x) = \frac{1}{x^3}$ and $x \neq 0$, then f'(x) is
 - $A \qquad \frac{1}{3x^2}$ $B \qquad -\frac{3}{x^4}$ $C \qquad -\frac{3}{x^2}$ $D \qquad -\frac{1}{2x^2}$

3. The remainder when $2x^3 + x^2 - 1$ is divided by x - 2 is

- A 9
- **B** 5
- C 19
- **D** -13

4. Which of the following is/are true of the circle with equation $x^2 + y^2 - 36 = 0$?

- 1 It passes through the origin.
- 2 It has a radius of 6.
- 3 It has the origin as its centre.
- A 1 only
- **B** 2 only
- C 2 and 3 only
- **D** some other combination of responses

5. Given that $\cos x^\circ = \frac{1}{\sqrt{3}}$ and 0 < x < 90, then the exact value of $\cos 2x^\circ$ will be

6. Part of the graph of y = f(x) is shown below.

The graph of y = f'(x) could be represented by

- 7. Which one of the following points lies on the graph of $y = \log_3 x$?
 - A (9,2)
 - **B** (3,27)
 - C (2,9)
 - **D** (0,0)

The shaded area above is given by

$$A \qquad \int_{b}^{d} (f(x) - g(x)) dx$$
$$B \qquad \int_{a}^{c} (f(x) + g(x)) dx$$
$$C \qquad \int_{a}^{c} (f(x) - g(x)) dx$$
$$D \qquad \int_{a}^{d} (f(x) - g(x)) dx$$

9. Two functions, defined on suitable domains, are given as $f(x) = 3x^2 - 2$ and g(x) = 1 - x. The value of f(g(2)) is

A -9B -5C -1D 1

10. The value of $\cos\frac{5\pi}{6}$ is

8.

11. Given that
$$\mathbf{v} = \begin{pmatrix} \sqrt{2} \\ 2 \\ \sqrt{3} \end{pmatrix}$$
, then $|\mathbf{v}|$ is
A $2 + \sqrt{5}$
B 3
C 9
D $\sqrt{7}$

12. A circle has as its equation $x^2 + y^2 + 4x - 2y - 4 = 0$.

Which of the following correctly states the coordinates of its centre and the value of its radius?

- A (-2,1), r=1
- **B** (2,-1), r=3
- C (-2,1), r=3
- **D** (2,-1), r=1
- 13. $\int_{0}^{\frac{\pi}{4}} 4(\cos 2x) \, dx$ is equal to
 - **A** 0
 - **B** 4
 - C 2
 - **D** 2

14. A recurrence relation is defined by $U_{n+1} = 0.4U_n - 24$. The limit of this sequence is

- A 40
- **B** -24
- C 0.03
- **D** 50

15. If x and y are integers the value of $(x + y)^2 - (x - y)^2$ is always

- A negative
- **B** positive
- C a perfect square
- **D** a multiple of 4

16.

The diagram shows part of the graph of y = f(x).

Which of the following is/are true for the function above?

- $1 \qquad f'(0) < 0$
- 2 f'(6) < 0
- $3 \qquad f'(9) = 0$
- 4 f'(12) > 0
- A 2 and 3 only
- **B** 3 only
- C 1 and 3 only
- **D** 1, 2, 3 and 4
- 17. Consider the diagram and information below.

If the magnitude of vector **a** is 2 and the magnitude of vector **b** is 1 then the value of $\mathbf{a} \cdot (\mathbf{a} + \mathbf{b})$ is

 $\begin{array}{c} a \\ \theta \\ b \end{array} \qquad \cos \theta = \frac{1}{2} \end{array}$

- A 6
- **B** $\sqrt{5}$
- C 5
- **D** 3

If $\tan ABC = \frac{3}{4}$ then the area of triangle ABC in square centimetres is

Α

5

18.

- **B** 4
- **C** $\frac{15}{4}$
- **D** 3

19. The quadratic equation $4kx^2 - 8x + k = 0$ has equal roots.

The value of k, where k > 0 is

- A 4
 B 2
 C 0
- **D** 2

20. $f(x) = ax^2 - 2x - 5$ has a stationary value when x = 3.

The value of *a* is

A $\frac{1}{3}$ **B** $-\frac{1}{3}$ **C** $\frac{7}{6}$ **D** $\frac{11}{9}$

[END OF SECTION A]

SECTION B ALL questions should be attempted

21. Consider the isosceles triangle and the rectangle below.

The triangle has a base measuring 2x and a vertical height of x + k. The rectangle has dimensions 2k - 2 by x as shown. All dimensions are in centimetres.

(a) Given that the **area of the rectangle** is 4cm^2 **more than** the area of the triangle, **show clearly** that the following equation can be formed.

$$x^2 + (2-k)x + 4 = 0$$
 3

- (b) Hence find k, given that the equation $x^2 + (2-k)x + 4 = 0$ has equal roots and k > 0. 3
- (c) Find x when k takes this value and calculate the area of each shape.
- 22. In the diagram A has coordinates (3,9) and the point B has coordinates (3,-11) as shown. A lies on the line with equation y = 3x.
 - (a) If line BC is perpendicular to the line AD, establish the equation of BC.
 - (b) Hence find the coordinates of D.
 - (c) If D is the mid-point of BC, write down the coordinates of C.
 - (d) Find the equation of the circle passing through the points A, D and C.

3

- **23.** A function is defined on a suitable domain as $f(x) = \frac{1}{3}x^3 4x^2 + x$.
 - (a) Show that its derivative can be expressed in the form

$$f'(x) = (x+p)^2 + q$$
, and state the values of p and q. 4

2

- (b) Hence state the minimum rate of change of this function and the corresponding value of x.
- 24. Find the solution(s) of the equation $2\cos^2 a = \cos a + 1$ for $0 \le a \le \pi$. 5

[END OF SECTION B]

[END OF QUESTION PAPER]