Mathematics Practice Paper I Paper 1 Assessing Units 1, 2 & 3

NATIONAL QUALIFICATIONS

Time allowed - 1 hour 30 minutes

Read carefully

Calculators may <u>NOT</u> be used in this paper.

Section A - Questions 1 - 20 (40 marks)

Instructions for the completion of Section A are given on the next page.

For this section of the examination you should use an HB pencil.

Section B (30 marks)

- 1. Full credit will be given only where the solution contains appropriate working.
- 2. Answers obtained by readings from scale drawings will not receive any credit.

FORMULAE LIST

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{(g^2 + f^2 - c)}$.

The equation $(x-a)^2 + (y-b)^2 = r^2$ represents a circle centre (a, b) and radius r.

Scalar Product: $a \cdot b = |a| |b| \cos\theta$, where θ is the angle between a and b.

or

$$a \cdot b = a_1 b_1 + a_2 b_2 + a_3 b_3$$
 where $a = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$

Trigonometric formulae:

$$\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$$
$$\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$$
$$\cos 2A = \cos^2 A - \sin^2 A$$
$$= 2\cos^2 A - 1$$
$$= 1 - 2\sin^2 A$$
$$\sin 2A = 2\sin A \cos A$$

Table of standard derivatives:

f(x)	f'(x)
sin <i>ax</i>	$a \cos ax$
$\cos ax$	$-a \sin ax$

Table of standard integrals:

$$f(x) \qquad \int f(x) \, dx$$

$$\sin ax \qquad -\frac{1}{a}\cos ax + C$$
$$\cos ax \qquad \frac{1}{a}\sin ax + C$$

All questions should be answered

Section A

1. A, B, C and D are the points (3, 2), (2, 3), (-2, -1) and (p, 5) respectively. If AB is parallel to CD, the value of p is

A.
$$-8$$

B. -4
C. 8
D. $-\frac{1}{4}$

- 2. The minimum turning point of the graph of the parabola $y = 2x^2 6x + 11$ is
 - A. $(1 \cdot 5, 6 \cdot 5)$ B. $(-1 \cdot 5, 6 \cdot 5)$ C.(3, 2)D. $(1 \cdot 5, 8 \cdot 75)$

3. The range of values of x for which the function $f(x) = x^2 + 4x - 5$ is decreasing is

- A. x < -2B. x > -2C. x < 2D. x > 2
- 4. The point A(-3, 2) lies on the graph with equation y = f(x).

If the graph of the related function y = f(x+2)-3 is drawn, the image of point A will be

A.(0, 4)B.(-6, 4)C.(-5, -1)D.(-1, -1)

- 5. The gradient of the tangent to the curve $y = 5x 2x^2$ at the point (2, -2) is
 - A. −2
 B. −18
 C. −3
 D. 13
- 6. The two sequences defined by the recurrence relations $U_{n+1} = 0 \cdot 2U_n + p$ and $V_{n+1} = 0 \cdot 3V_n + q$ have the same limit. When p is expressed in terms of q, p equals

A.
$$\frac{7}{8}q$$

B. $\frac{8}{7}q$
C. $\frac{2}{3}q$
D. $\frac{3}{2}q$

7. When $x^4 + px^3 - 5x + 11$ is divided by x - 3 the remainder is -4. The value of p is

A.	0
B.	-1
C.	-4
D.	-3

8. How many real roots does the equation $(x-2)(x^2 - x + 7) = 0$ have?

A.	none
B.	1
C.	2
D.	3

9.
$$\int_{-4}^{4} x \, dx \text{ equals}$$

10. The equation of the circle with centre (-3, 1) and radius 5 is

A.
$$(x+3)^2 + (y-1)^2 = 25$$

B. $(x+3)^2 + (y-1)^2 = 5$
C. $(x-3)^2 + (y+1)^2 = 25$
D. $(x-3)^2 + (y+1)^2 = 5$

11. The gradient of the tangent to the circle $x^2 + y^2 = 41$ at the point (-5, 4) is

A.
$$-\frac{5}{4}$$

B. $\frac{5}{4}$
C. $\frac{4}{5}$
D. $-\frac{4}{5}$

12. If
$$f'(x) = 2x - 5$$
 and $f(2) = 6$, $f(x)$ equals
A. $x^2 - 5x - 12$
B. $x^2 - 5x + 12$
C. $x^2 - 5x$
D. $x^2 - 5x - 4$

13. The line with equation $y + \sqrt{3}x = 2$ makes an angle of a° with the positive direction of the x - axis. a is equal to

A.	60°
B.	30°
C.	120 ^o
D.	150°

14. A is the point (6, 1, 7) and B is (-9, 6, -3). The point K divides AB in the ratio 4 : 1. The coordinates of K are

A.	(-3, -2, -5)
B.	(-6, 5, -1)
C.	(6, -5, 1)
D.	(3, 2, 5)

 $15. \int 4\cos 2x \, dx \text{ equals}$

A.	$8\sin 2x + C$
B.	$-8\sin 2x + C$
C.	$-2\sin 2x + C$
D.	$2\sin 2x + C$

16.
$$\frac{d}{dx}\sqrt{(x+2)(x-2)}$$
 equals
A. $x(x^2-4)^{-\frac{1}{2}}$
B. $\frac{1}{2}(x^2-4)^{-\frac{1}{2}}$
C. $\frac{2}{3}(x^2-4)^{\frac{3}{2}}$
D. $(x^2-4)^{\frac{1}{2}}$

17. If $\log_2 x = 5$, the value of x is

A.	25
B.	$2 \cdot 5$
C.	32
D.	10

18. The exact value of $\cos(\frac{7\pi}{6})$ is

A.
$$-\frac{\sqrt{3}}{2}$$

B. $-\frac{1}{2}$
C. $\frac{\sqrt{3}}{2}$
D. $\frac{1}{2}$

19. Given that $k \cos \alpha = -1$ and $k \sin \alpha = 1$, k > 0; $0 \le \alpha \le 360$, the values of k and α are

A.
$$k = \sqrt{2}; \ \alpha = 45^{\circ}$$

B. $k = 2; \ \alpha = 45^{\circ}$
C. $k = \sqrt{2}; \ \alpha = 135^{\circ}$
D. $k = 2; \ \alpha = 135^{\circ}$

20. Given that |a| = 3, |b| = 5 and $a \cdot b = 7$, the value of $a \cdot (a+b)$ is

A.	15
B.	16
C.	35
D.	49

Section **B**

21. Two functions, defined on suitable domains, are given as

 $f(x) = x(x^2 - 1)$ and g(x) = x - 1.

- (a) Show that the composite function, h(x) = f(g(x)), can be written in the form $h(x) = ax^3 + bx^2 + cx$, where *a*, *b* and *c* are constants, and state the value(s) of *a*, *b* and *c*.
- (b) Hence solve the equation h(x) = 6, for x, showing clearly that there is only one solution.
- 22. Part of the line, L_1 , with equation 4y = x + 13, is shown in the diagram. The line L_2 is parallel to L_1 and passes through the point (0,-1). Point A lies on the *x*-axis.

(a)	Establish the equation of line L_2 and write down the coordinates of the point A.	3
(b)	Given that the line AB is perpendicular to both lines, find, algebraically, the coordinates of point B.	5
(c)	Hence calculate the exact shortest distance between the lines L_1 and L_2 .	2

23. Two vectors are defined as $F_1 = 3i + 4j - k$ and $F_2 = 2i - 3j - 6k$.

Show clearly that these two vectors are perpendicular.

3

4

4

24. A circle, centre C(8, k), has the points P(2,-2) and Q on its circumference as shown.

M(0,2) is the mid-point of the chord PQ.

- (a) Find the coordinates of Q.
- (b) Given that radius CQ is horizontal, write down the value of *k*, the *y*-coordinate of C.
- (c) Hence establish the equation of the circle.

25. Given that $\log_2(x^2+8) - 2\log_2 3 = 3$, find the value of x where x > 0. 4

[END OF QUESTION PAPER]