Mathematics Practice Paper H Paper 1 Assessing Units 1, 2 & 3 NATIONAL QUALIFICATIONS

Time allowed - 1 hour 30 minutes

Read carefully

Calculators may <u>NOT</u> be used in this paper.

Section A - Questions 1 - 20 (40 marks)

Instructions for the completion of Section A are given on the next page.

For this section of the examination you should use an HB pencil.

Section B (30 marks)

- 1. Full credit will be given only where the solution contains appropriate working.
- 2. Answers obtained by readings from scale drawings will not receive any credit.

FORMULAE LIST

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{(g^2 + f^2 - c)}$.

The equation $(x-a)^2 + (y-b)^2 = r^2$ represents a circle centre (a, b) and radius r.

Scalar Product: $a \cdot b = |a| |b| \cos\theta$, where θ is the angle between a and b.

or

$$a \cdot b = a_1 b_1 + a_2 b_2 + a_3 b_3$$
 where $a = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$

Trigonometric formulae:

$$\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$$
$$\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$$
$$\cos 2A = \cos^2 A - \sin^2 A$$
$$= 2\cos^2 A - 1$$
$$= 1 - 2\sin^2 A$$
$$\sin 2A = 2\sin A \cos A$$

Table of standard derivatives:

f(x)	f'(x)
sin <i>ax</i>	$a \cos ax$
$\cos ax$	$-a \sin ax$

Table of standard integrals:

$$f(x) \qquad \int f(x) \, dx$$

$$\sin ax \qquad -\frac{1}{a}\cos ax + C$$
$$\cos ax \qquad \frac{1}{a}\sin ax + C$$

All questions should be answered

Section A

1. Triangle PQR has vertices P(4, 7), Q(-2, 3) and R(2, 9). PM is a median of this triangle. The coordinates of M are

A.	(3, 8)
B.	(0, 6)
C.	(1, 5)
D.	(2, 6)

2. The sequence defined by the recurrence relation $U_{n+1} = aU_n + 6$ has limit 10. The value of *a* is

A.	$2 \cdot 5$
B.	0.6
C.	$0 \cdot 4$
D.	$-0\cdot 4$

3. A function f is defined as $f(x) = 3 - \frac{6}{x}$. The value of f(f(-2)) is A. 0 B. 2 C. 3 D. 6

4. A circle has equation $x^2 + y^2 - 6x + 8y - 1 = 0$. The centre of it is

A.(6, 8)B.(-3, 4)C.(3, -4)D.(-6, 8)

5. Which of the following is **NOT** a factor of the equation $x^3 - 4x^2 + x + 6 = 0$.

A. (x+1)B. (x-2)C. (x+3)D. (x-3) 6. The diagram shows part of the graphs of y = f(x) and y = g(x). The curves intersect at the point (2, -1) and the origin.

The area enclosed by the two curves is given by

A.
$$\int_{0}^{2} (g(x) - f(x)) dx$$

B. $\int_{0}^{2} (g(x) + f(x)) dx$
C. $\int_{0}^{2} (g(x) \times f(x)) dx$
D. $\int_{0}^{2} (f(x) - g(x)) dx$

7. The exact value of
$$\sin(\frac{11\pi}{6})$$
 equals
A. $\frac{1}{2}$
B. $-\frac{1}{2}$
C. $\frac{\sqrt{3}}{2}$
D. $-\frac{\sqrt{3}}{2}$

8. A sequence is defined by $U_{n+1} = 1 \cdot 5U_n - 2$ with $U_0 = 12$. The value of U_3 is

A.	69
B.	38
C.	31
D.	22

9. The point (81, k) lies on the graph $y = \log_3 x$. The value of k is

A. $\frac{1}{4}$ **B.** 3^{81} **C.** 27 **D.** 4

10. The exact value of $2\sin 75^{\circ}\cos 75^{\circ}$ is

A.
$$-\frac{1}{2}$$

B. $\frac{1}{2}$
C. $\frac{\sqrt{3}}{2}$
D. $-\frac{\sqrt{3}}{2}$

11. The integral of $\sqrt{(1+4x)} dx$ is

A.
$$\frac{2}{3}(1+4x)^{\frac{3}{2}} + C$$

B. $\frac{2}{(1+x)^{\frac{1}{2}}} + C$
C. $\frac{1}{6}(1+4x)^{\frac{3}{2}} + C$
D. $\frac{1}{2}(1+4x)^{\frac{3}{2}} + C$

12. The magnitude of vector \boldsymbol{g} , where $\boldsymbol{g} = 7\boldsymbol{i} + 3\sqrt{5}\boldsymbol{j} - 5\sqrt{2}\boldsymbol{k}$, is

A. 12 **B.** $5\sqrt{3}$ **C.** 2 **D.** $\sqrt{2}$

- 13. The derivative of $(4-x)^4$ with respect to x is
 - A. $-\frac{1}{5}(4-x)^5$ B. $-4(4-x)^3$ C. $-3(4-x)^3$ D. $4(4-x)^3$
- 14. Given that (x+3) is a factor of $x^3 5ax 3$, the value of *a* is

А.	$\frac{2}{5}$
B.	$\frac{1}{2}$
C.	2
D.	$-\frac{2}{5}$

15. A parabola has equation $y = x^2 - 10x + 16$. The coordinates and nature of its turning point are

- A. (-5, -9) and maximum
 B. (-5, -9) and minimum
 C. (5, -9) and maximum
 D. (5, -9) and minimum
- 16. The curve with equation $y = 2x^3 5x^2 4x + 3$ has 2 turning points one of which is minimum. The *x* - coordinate of this minimum turning point is

A.
$$-\frac{1}{3}$$

B. 2
C. -2
D $\frac{1}{3}$

17. The maximum value of $\frac{1}{x^2 + 6x - 3}$ is

A.
$$-\frac{1}{3}$$

B. 12
C. $\frac{1}{12}$
D. $-\frac{1}{12}$

18. $\int 2\sin(3x+1) dx$ equals

A. $\frac{2}{3}\cos(3x+1) + C$ B. $6\cos(3x+1) + C$ C. $-\frac{2}{3}\cos(3x+1) + C$ D. $2\cos(3x+1) + C$

19. P is the point (-4, -1, -2) and R is the point (5, 8, 7). The point T divides PR in the ratio 5 : 4. The coordinates of T are

А.	(1, 7, 5)
B.	(1, 4, 3)
C.	(1, 1, 1)
D.	(-1, -4, -3)

20. When $3\sin x + \cos x$ is expressed in the form $k\cos(x-a)$, the value of k and the range of values for a are

A.
$$k = 2$$
 and $\frac{\pi}{2} \le a \le \pi$
B. $k = \sqrt{10}$ and $\frac{\pi}{2} \le a \le \pi$
C. $k = 2$ and $0 \le a \le \frac{\pi}{2}$
D. $k = \sqrt{10}$ and $0 \le a \le \frac{\pi}{2}$

Section **B**

- 21. Part of the line with equation x + 3y = 9 is *Y* shown in the diagram. B lies on this line x + 3y = 9and has coordinates (3, 2). B(3, 2) 0 Given that the line AB is perpendicular (a) x to the line x + 3y = 9, find the equation of the line AB. 3 Hence write down the coordinates of A. (b) 1 Calculate the area of the shaded triangle. (c) 4
- What can you say about p if the equation, in x, $\frac{x}{p} + \frac{9}{px} = 1$ has **no real** roots? 22. 6
- With reference to an origin O, the coordinates of A and B are (1,2,3) and 23. (4,1,5) respectively.
 - Prove that triangle OAB is isosceles. (a)
 - (b) Calculate the size of angle AOB.
- The diagram below shows two congruent circles which touch at a single point T. 24. The circle, centre A, has as its equation $x^2 + y^2 - 6x - 18y + 45 = 0$. The line with equation 2y = x is the common tangent to the two circles through T.

- Show algebraically that T has coordinates (6,3). (a)
- Hence establish the the coordinates of B, the centre of the lower circle, and (b) find the equation of this circle.

6

4

3

3