Mathematics Practice Paper G Paper 1 Assessing Units 1, 2 & 3

NATIONAL QUALIFICATIONS

Time allowed - 1 hour 30 minutes

Read carefully

Calculators may <u>NOT</u> be used in this paper.

Section A - Questions 1 - 20 (40 marks)

Instructions for the completion of Section A are given on the next page.

For this section of the examination you should use an HB pencil.

Section B (30 marks)

- 1. Full credit will be given only where the solution contains appropriate working.
- 2. Answers obtained by readings from scale drawings will not receive any credit.

FORMULAE LIST

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{(g^2 + f^2 - c)}$.

The equation $(x-a)^2 + (y-b)^2 = r^2$ represents a circle centre (a, b) and radius r.

Scalar Product: $a \cdot b = |a| |b| \cos\theta$, where θ is the angle between a and b.

or

$$a \cdot b = a_1b_1 + a_2b_2 + a_3b_3$$
 where $a = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$

Trigonometric formulae:

$$\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$$
$$\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$$
$$\cos 2A = \cos^2 A - \sin^2 A$$
$$= 2\cos^2 A - 1$$
$$= 1 - 2\sin^2 A$$
$$\sin 2A = 2\sin A \cos A$$

Table of standard derivatives:

f(x)	f'(x)
sin <i>ax</i>	$a \cos ax$
$\cos ax$	$-a \sin ax$

Table of standard integrals:

$$f(x) \qquad \int f(x) \, dx$$

$$\sin ax \qquad -\frac{1}{a}\cos ax + C$$
$$\cos ax \qquad \frac{1}{a}\sin ax + C$$

All questions should be answered

Section A

- 1. 2 is a root of the equation $2x^3 + 3x^2 11x 6 = 0$. The other roots are
 - A. $-\frac{1}{2}$ and -3B. $\frac{1}{2}$ and 3 C. $-\frac{3}{2}$ and -3D. $\frac{3}{2}$ and 1
- 2. The diagram shows the graph of two functions *f* and *g*.

The values of x for which g(x) > f(x) are

- A.x < 2 and x > 5B.2 < x < 5C.all values of xD.no values of x
- 3. The line with equation 2x 3y = 14 is perpendicular to the line with equation y = ax + 4. The value of *a* is

A.
$$\frac{2}{3}$$

B. $-\frac{2}{3}$
C. $\frac{3}{2}$
D. $-\frac{3}{2}$

4. If
$$p = \begin{pmatrix} 2 \\ -3 \\ 4 \end{pmatrix}$$
 and $q = \begin{pmatrix} 3 \\ -4 \\ -2 \end{pmatrix}$, $p \cdot q$ equals
A. 10
B. 0
C. -14
D. -9

5. Which of the following expressions is equal to $2\cos(x-\frac{\pi}{6})$?

A. $\sqrt{3} \sin x + \cos x$ B. $\sqrt{3} \cos x - \sin x$ C. $\sqrt{3} \sin x - \cos x$ D. $\sqrt{3} \cos x + \sin x$

6. When $3x^2 + 15x - 7$ is expressed in the form $3(x + a)^2 - b$, the value of b is

- A. $13 \cdot 75$ B. $25 \cdot 75$ C. $-25 \cdot 75$ D.-7
- 7. A tangent to the curve $y = x^3 4$ is drawn and its gradient calculated to be 12 at the point where x = k. The value of k, where k > 0, is
 - A.
 4

 B.
 12

 C.
 $\sqrt[3]{16}$

 D.
 2
- 8. The graph of $y = \log_2 4x$ cuts the x axis at the point with x coordinate

A. 2 **B.** -2 **C.** $\frac{1}{4}$ **D.** 0 9. The derivative of $\frac{1}{2x^3}$ is

A.
$$\frac{1}{6x^2} 3$$

B. $-\frac{3}{2x^2}$
C. $-6x^2$
D. $-\frac{3}{2x^4}$

10. For the quadratic equation $x^2 - 5x + 3 = 0$ the value of the discriminant is

A.	63
В.	37
C.	13
D.	-37

11. Given that
$$\boldsymbol{u} = \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}$$
 and $\boldsymbol{v} = \begin{pmatrix} 4 \\ 4 \\ 4 \end{pmatrix}$ which of the following is/are correct?

- (1) *u* and *v* are perpendicular to each other
- (2) the magnitude of \boldsymbol{u} is $\sqrt{14}$
- (3) *v* is a unit vector

А.	(1) only
B.	(2) only
C.	(1) and (2)
D.	(1) and (3)

12. Given that $\log_2(x-1) = \log_3 27$, the value of x is

A.	9
B.	7
C.	4
D.	82

13. The limit of the sequence defined by the recurrence relation $U_{n+1} = 0 \cdot 25U_n + 12$ is

A.	-16
B.	9.6
C.	48
D.	16

- 14. The rate of change of the function $f(x) = 2x^3$ when x = -2 is
 - A. 24
 B. 16
 C. -16
 D. -24
- 15. If $f(x) = (4x + x^2)^3$, the value of f'(1) is

A.	125
B.	300
C.	450
D.	625

- 16. A circle has equation $x^2 + y^2 6x + 4y 12 = 0$. The length of its radius is
 - **A.** 1 **B.** 5 **C.** $2\sqrt{10}$ **D.** 8

17. Given that $\cos \alpha = \frac{2}{3}$, the value of $\cos 2\alpha$ is

A.
$$\frac{4}{5}$$

B. $\frac{\sqrt{5}}{3}$
C. $-\frac{1}{9}$
D. $\frac{4\sqrt{5}}{3}$

18. The value of $7 - x - x^2 + x^3$ when x = 2 is

19. A curve for which $\frac{dy}{dx} = 4x + 1$ passes through the point (1, -1). y expressed in terms of x equals

- A. $2x^2 + x + 4$ B. $2x^2 - 4$ C. $2x^2 + x - 4$ D. 4
- **20.** The maximum value of $1 (4 \sin x 3 \cos x)$ is
 - A. 8
 B. −6
 C. 0
 D. 6

Section **B**

21. Two functions are defined on suitable domains as

$$f(x) = \frac{x-2p}{3}$$
 and $g(x) = x^2 + p$, where p is a constant.

(a) Show clearly that the composite function g(f(x)) can be expressed in the form

$$g(f(x)) = \frac{1}{9} \left(x^2 - 4px + 4p^2 + 9p \right)$$
3

- (b) The equation $g(f(x)) = 4p^2$ has **no real** roots. Use this information to find the range of values for *p* which would allow this. 5
- 22. Part of the graph of a curve is shown opposite.

The diagram is not drawn to scale.

23. The picture below shows a small section of a larger circuit board.

Relative to rectangular axes the points P, Q and R have as their coordinates (-8,3,1), (-2,-6,4) and (2,-12,6) respectively.

Prove that the points P, Q and R are collinear, and find the ratio PQ:QR.

24. The power, *E*, emitting from a wave generator is given by the formula

$$E = \cos t^\circ + \sqrt{3}\sin t^\circ + 10 ,$$

where t is the time elapsed, in seconds, from switch on.

- (a) Express E in the form $E = k \sin(t + \theta)^\circ + 10$, where k > 0 and $0 \le \theta \le 360$. 3
- (b) Hence state the maximum value of *E* and the corresponding replacement for *t*. 2
- 25. Triangle ABC has vertices A(-6,1), B(8,9) and C(3,-5) as shown.M is the mid-point of side AB and D is a point on side AC.

[END OF QUESTION PAPER]