Mathematics Practice Paper E Paper 2 Assessing Units 1, 2 & 3

NATIONAL QUALIFICATIONS

Time allowed - 1 hour 10 minutes

Read carefully

- 1. Calculators may be used in this paper.
- 2. Full credit will be given only where the solution contains appropriate working.
- 3. Answers obtained from readings from scale drawings will not receive any credit.

FORMULAE LIST

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{(g^2 + f^2 - c)}$.

The equation $(x-a)^2 + (y-b)^2 = r^2$ represents a circle centre (a, b) and radius r.

Scalar Product: $a \cdot b = |a| |b| \cos \theta$, where θ is the angle between a and b.

or

$$a \cdot b = a_1 b_1 + a_2 b_2 + a_3 b_3$$
 where $a = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$

Trigonometric formulae: $sin(A \pm B) = sin A cos B \pm cos A sin B$

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$
$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$
$$\cos 2A = \cos^2 A - \sin^2 A$$
$$= 2\cos^2 A - 1$$
$$= 1 - 2\sin^2 A$$
$$\sin 2A = 2\sin A \cos A$$

f(x)	f'(x)
sin <i>ax</i>	$a \cos ax$
$\cos ax$	$-a \sin ax$

	Ċ
f(x)	f(x) dx

$$\sin ax \qquad -\frac{1}{a}\cos ax + C$$
$$\cos ax \qquad \frac{1}{a}\sin ax + C$$

All questions should be attempted

1. Triangle ABC has vertices A(5,3), B(-3,7) and C(-6,-8) as shown. The altitude through B meets AC at P.

(b) Hence find the coordinates of P.	•
(-)	3
(c) BP is produced in such a way that $PD = \frac{1}{2}BP$. Establish the coordinates of	D. 1
(d) By considering gradients, calculate the size of angle DCP to the nearest deg	gree. 3

- (a) Explain why $PQ = d \cos x$ and $QR = d \sin x$ units long. 2
- (b) Hence show that the perimeter (*P*) of the triangle can be expressed in the form

$$P = d + \sqrt{2} d\cos(x - \frac{\pi}{4})$$
7

3. Three wheels are positioned in such a way that their centres are collinear.

When placed on a set of rectangular axes the equations of the two larger circles are

$$x^{2} + y^{2} + 16x + 12y = 0$$
 and $(x - 16)^{2} + (y - 4)^{2} = 100$, as shown.

(a)	Write down the coordinates of the two centres C_1 and C_2 .	2
(b)	Calculate the radii of the two larger circles and the distance between the two centres C_1 and C_2 .	4
(c)	Hence establish the centre and radius of the small circle and write down its equation.	3

4. Solve algebraically the equation

$$\sin x^{\circ} - 3\cos 2x^{\circ} + 2 = 0$$
, $0 \le x < 360$. 5

- 5. Two functions are defined as f(x) = (x+2)(x+1) and g(x) = x(x-2).
 - (a) Given that h(x) = f(g(x)), show clearly that $h(x) = x^4 4x^3 + 7x^2 6x + 2$. **3**
 - (b) Hence solve the equation h(x) = 0 showing that it has, in fact, only one real root.

4

6. A function is defined as $f(x) = \sqrt{x}(x-3)$, where only the positive value of \sqrt{x} is taken for each value of x > 0.

Part of the graph of y = f(x) is shown below.

- (a) Find the coordinates of the turning point at P and the root at R.
- (b) Hence calculate the shaded area below giving your answer **correct to 2 decimal places**.

6

5

7. In the diagram below PQRS is a square of side 2x cm.

A straight line OA, measuring 4 cm, has been drawn in such a way that A lies at the centre of the square and OA is parallel to PS.

(a) Show that $OP^2 = 2x^2 - 8x + 16$.

(b) Hence, by completing the square, or otherwise, find x for which the length of OP is at a minimum and state the minimum length of OP.

[END OF QUESTION PAPER]

4

4