Mathematics Practice Paper E Paper 1 Assessing Units 1, 2 & 3

NATIONAL QUALIFICATIONS

Time allowed - 1 hour 30 minutes

Read carefully

Calculators may <u>NOT</u> be used in this paper.

Section A - Questions 1 - 20 (40 marks)

Instructions for the completion of Section A are given on the next page.

For this section of the examination you should use an HB pencil.

Section B (30 marks)

- 1. Full credit will be given only where the solution contains appropriate working.
- 2. Answers obtained by readings from scale drawings will not receive any credit.

FORMULAE LIST

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{(g^2 + f^2 - c)}$.

The equation $(x-a)^2 + (y-b)^2 = r^2$ represents a circle centre (a, b) and radius r.

Scalar Product: $a \cdot b = |a| |b| \cos\theta$, where θ is the angle between a and b.

$$a \cdot b = a_1 b_1 + a_2 b_2 + a_3 b_3$$
 where $a = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$

Trigonometric formulae: $sin(A \pm B) = sin A cos B \pm cos A sin B$

or

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\cos 2A = \cos^2 A - \sin^2 A$$

$$= 2\cos^2 A - 1$$

$$= 1 - 2\sin^2 A$$

$$\sin 2A = 2\sin A \cos A$$

Table of standard	f(x)	f'(x)
	$\sin ax$	$a \cos ax$
	$\cos ax$	$-a \sin ax$

 $\cos ax$

Table of standard integrals:

$$f(x) \qquad \int f(x) \, dx$$
$$\sin ax \qquad -\frac{1}{\cos ax} + C$$

$$\frac{a}{1}{a}\sin ax + C$$

All questions should be answered

Section A

1. Given that x = 4 is a root of the equation $2x^3 + 15x^2 - 104x + 48 = 0$, the other roots are

A.	12	and	$-\frac{1}{2}$
B.	6	and	-1
C.	1	and	-6
D.	$\frac{1}{2}$	and	-12

2. $\frac{d}{dx}\cos 5x$ equals

- A. $\frac{1}{5}\sin 5x$ B. $-5\sin 5x$ C. $5\sin 5x$ D. $-\frac{1}{5}\sin 5x$
- 3. The point A(-3, 9) lies on the curve with equation $y = 3x^2 + 2x 12$. The gradient of the tangent to the curve at A is

A.	-16
B.	9
C.	56
D.	63

4. If A the point (1, 5, -7), B the point (3, 4, 1) and C(7, 2, z) are collinear, the value of z is

A.	9
B.	17
C.	5
D.	-11

5. Two functions f and g are defined by f(x) = 3x - 1 and $g(x) = x^2 + 4$. A formula for g(f(x)) is

A.
$$9x^2 - 6x + 5$$

B. $9x^2 + 5$
C. $3x^2 + 5$
D. $3x^3 + 3x^2 - 1$

6. A line has equation 5y + 3x = 1. The line makes an angle of θ with the positive direction of the x - axis. The value of tan θ is

A.
$$-3$$

B. -0.6
C. 0.6
D. 3

7. The graph of f(x) is shown. y (4, 5) 3 2 5 x

Which of these graphs shows the related function y = f(x-3) + 2?

8. Given that $f(x) = \frac{2x^3 - 3x^2 - 1}{x}$, the value of f'(-1) is A. -6B. 13C. 0D. 1

9. The exact value of $\sin \frac{2\pi}{3}$ is

A.
$$-\frac{\sqrt{3}}{2}$$

B. $-\frac{1}{2}$
C. $\frac{\sqrt{3}}{2}$
D. $\frac{1}{2}$

10. The line y + 2x = 5 is a tangent to the parabola $y = 4 - x^2$. The coordinates of the point of contact are

A.
$$(-1, 7)$$
B. $(1, -3)$ C. $(-1, 3)$ D. $(1, 3)$

11. The range of values of k for which $x^2 - 3x + k = 0$ has real roots is

A.
$$k \le \frac{9}{4}$$

B. $k < \frac{9}{4}$
C. $k \ge \frac{9}{4}$
D. $k > \frac{9}{4}$

12. The remainder when $2x^3 + 4x + 3$ is divided by (x + 2) is

A. 27
B. 3
C. -21
D. 19
13.
$$\int_{-1}^{2} x^{-3} dx$$
 equals
A. $\frac{3}{16}$
B. $\frac{3}{8}$
C. $-\frac{5}{16}$
D. $-\frac{5}{8}$

14. A sequence is defined by the recurrence relation $U_{n+1} = aU_n + b$. If $U_0 = 5$ and $U_1 = 10$. An expression for *a* in terms of *b* is

A.
$$a = \frac{1}{2} + \frac{1}{10}b$$

B. $a = \frac{1}{2} - \frac{1}{10}b$
C. $a = 2 + \frac{1}{5}b$
D. $a = 2 - \frac{1}{5}b$

15. In this diagram
$$|a| = 2$$
 and $|b| = \sqrt{3}$

The value of **a** . **b** is

A.
$$\sqrt{3}$$

B. 3
C. $-\sqrt{3}$
D. -3

16. The gradient of the tangent to the curve $y = \cos x$ at the point where $x = 210^{\circ}$ is

A.
$$-\frac{\sqrt{3}}{2}$$

B. $-\frac{1}{2}$
C. $\frac{\sqrt{3}}{2}$
D. $\frac{1}{2}$

17. $4\log 2 - 3\log 3$ expressed as the log of a single number is

А.	$\log \frac{16}{27}$
B.	-log11
C.	log1
D.	$-\log 1$

$$4\sin 3x \ dx \ \text{equals}$$

A. $\frac{4}{3}\cos 3x + C$ B. $12\cos 3x + C$ C. $-\frac{4}{3}\cos 3x + C$ D. $-12\cos 3x + C$

19. When $5\cos x - \sin x$ is expressed in the form $k\sin(x+\alpha)$, the value of k and $\tan \alpha$ are

A. $\sqrt{24}$ and $\tan \alpha = 5$ B. $\sqrt{24}$ and $\tan \alpha = \frac{1}{5}$ C. $\sqrt{26}$ and $\tan \alpha = -5$ D. $\sqrt{26}$ and $\tan \alpha = -\frac{1}{5}$ 20. A circle has equation $(x-2)^2 + (y+1)^2 = 29$. The gradient of the tangent to the circle at the point (-3, 1) is

A.
$$-\frac{2}{5}$$

B. $\frac{2}{5}$
C. $\frac{5}{2}$
D. $-\frac{5}{2}$

Section B

- **21.** A sequence is defined by the recurrence relation $U_{n+1} = 0.6U_n + 8$.
 - (a) Explain why this sequence has a limit as $n \to \infty$. 1
 - (b) Find the limit of this sequence.
 - (c) Given that $L U_1 = 3$, where L is the limit of this sequence, establish the value of U_0 , the initial value.
- 22. Given that x = -2 and x = 1 are two roots of the equation $x^3 + px^2 6x + q = 0$, establish the values of p and q and hence find the third root of the equation.
- 23. A function is defined as $g(\theta) = 2\cos^2 \theta 2\cos 2\theta$.

Show that $g'(\theta)$ can be written in the form

$$g'(\theta) = 2\sin 2\theta$$
 5

2

3

5

24. The circle below, centre C, has as its equation $x^2 + y^2 - 4x - 10y + 19 = 0$. M(1,3) is the mid-point of the chord AB.

- (a) Write down the coordinates of C, the centre of the circle.
- (b) Show that the equation of the chord AB can be written as x = 7 2y. **3**
 - (c) Hence find algebraically the coordinates of A and B.

25. (a) Given that $2\log_x y = \log_x 2y + 2$, show that x and y are related in such a way that

$$y = 2x^2.$$

(b) Hence find y when
$$x = \frac{1}{4}y$$
 and $y > 0$.

[END OF QUESTION PAPER]

2