Practice Paper C Marking Scheme - Paper I Section A

Answer: B

$$3y = x + 6$$
$$y = \frac{1}{3}x + 2$$
$$m = \frac{1}{3}$$
$$m_{perp} = -3$$
Answer: A

3.
$$2^{2} + 1^{2} - 4(2) + 6(1) - 3 = 0$$

statement (1) is correct
centre is (2, -3)
statement (2) is correct
$$r^{2} = 4 + 9 + 3 = 16$$

$$r = 4$$

statement (3) is incorrect
Answer: A

f(x) =
$$2x^{-4}$$

f'(x) = $-8x^{-5}$
 $= \frac{-8}{x^5}$
Answer: C
f(g(x)) = f(3-x)
 $= (3-x)^2 - 3$
 $= 9 - 6x + x^2 - 3$
 $= 6 - 6x + x^2$
Answer: C
6. Answer: A
7. $y = x^2 + 3$
 $7 = x^2 + 3$
 $x^2 = 4$
 $x = 2$
P(2, 7) and Q(1, 4)
 $m_{PQ} = \frac{7-4}{2-1} = 3$

9.

$$\cos 2x^{\circ} = 2 \times \left(\frac{\sqrt{3}}{2}\right) - 1$$

$$= 2 \times \frac{3}{4} - 1 = \frac{1}{2}$$
Answer: B

$$\frac{dy}{dx} = 3x^{2}$$
10. $x = -1$
 $\frac{dy}{dx} = 3(-1)^{2} = 3$
Answer: B

11.

12.

 $\tan \frac{5\pi}{6} (150^\circ) = -\tan \frac{\pi}{6} (30^\circ)$ $= -\frac{1}{\sqrt{3}}$ <u>Answer: C</u>-2 - 12 + 4z = 04z = 14 $z = \frac{14}{4} = \frac{7}{2}$

Answer: A

8. <u>Answer: C</u>

Answer: A

2.

$$-\cos 3x \times \frac{1}{3} + C$$

$$= -\frac{1}{3}\cos 3x + C$$

14.
$$L = \frac{-21}{1 - 0 \cdot 3} = \frac{-21}{0 \cdot 7} = \frac{-21}{\frac{7}{10}} = -21 \times \frac{10}{7} = -30$$

Answer: B

15.
$$3+2=5$$

Answer: A

16.

$$k = \sqrt{(-1)^{2} + 3^{3}} = \sqrt{10}$$

$$\tan \alpha = \frac{-1}{3}$$

$$S \qquad A^{*}$$

$$T \qquad C_{*}$$

$$Answer: B$$

$$\frac{d}{dx}2(x^{2}+1)^{-1} \qquad f'(x) = 2ax - 3 = 0$$

$$x = -2$$
17. = $-2(x^{2}+1)^{-2}.2x$
20. $-4a - 3 = 0$
 $-4a = 3$
 $a = -\frac{3}{4}$
Answer: C
Answer: A

18. At x = 0 graph is decreasing so f'(0) < 0 (1) is correct At x = 4 graph is decreasing so f'(4) < 0 (2) is incorrect At x = 5 graph is stationary so f'(5) = 0 (3) is correct

Answer: B

$$x^{2} - 2kx + k = 0$$

$$a = 1; b = -2k; c = k$$

19.

$$b^{2} - 4ac = 4k^{2} - 4.1.k = 0$$

$$4k^{2} - 4k = 0$$

$$4k(k - 1) = 0$$

$$k = 1$$

Answer: A

Practice Paper C - Paper 1 Section B

Marking Scheme

	Give 1 mark for each •	Illustration(s) for awarding each mark	
21.	ans: $f'(x) = 1 + \frac{1}{2}x^{-\frac{3}{2}}$ 4 marks • ¹ for dealing with the denominator • ² correct preparation • ³ for diff. 1 st term • ⁴ for diff. 2 nd term	• $f(x) = x^{-1}(x^2 - \sqrt{x})$ • $f(x) = x - x^{-\frac{1}{2}}$ • $f'(x) = 1 + \dots$ • $f'(x) = 1 + \frac{1}{2}x^{-\frac{3}{2}}$	
22a	ans: $y = 9x - 5$ • 1 establishing coords. of R a) • 2 strategy of differentiation for m • 3 finding m • 4 finding equation of tangent	• $R(0,-5)$ • $f'(x) = 3x^2 - 12x + 9 = m$ (stated or implied) • $f'(0) = 9 = m$ • $y = 9x - 5$	
b	ans: $A(1,0)$, $B(3,0)$, $C(2,-3)$ 4 marks • ¹ for knowing to relate S.P's to <i>x</i> -axis • ² solving derivative to zero • ³ for A and B ($x = 1$ or $x = 3$ is o.k.) • ⁴ for C	• ¹ attempting to find S.P.'s for roots • ² $3x^2 - 12x + 9 = 0$ • ³ $x = 1 \text{ or } x = 3 \therefore A(1,0)$, B(3,0) • ⁴ sub. 2 in deriv. $\Rightarrow C(2,-3)$	
23a	ans: $\vec{AC} = \begin{pmatrix} 2 \\ 8 \\ -4 \end{pmatrix}$ 1 mark • ¹ for answer	$\bullet^1 \begin{array}{c} c - a \\ c & \end{array} = \left(\begin{array}{c} 2 \\ 8 \end{array}\right)$	
b	ans: proof 4 marks • ¹ for establishing coords. of B	(-4) • ¹ B(8,4,-2)	
	• ² for establishing coords. of D • ³ for \vec{CD} in component form	• ² $D(6,10,-5)$ • ³ $\vec{CD} = c - d = \begin{pmatrix} 1\\4\\-2 \end{pmatrix}$	
	• ⁴ ans.(common point should be mention	ed) \bullet^4 since $\overrightarrow{AC} = 2\overrightarrow{CD}$, and C is a common point, then A, C and D are collinear	

	Give 1 mark for each •		Illustration(s) for awarding each mark	
24a b	ans: • ¹ • ² ans: • ¹ • ² • ³ • ⁴	proof2 marksequating volumes expanding and rearranging as required $c = \frac{11}{4}$ cmunderstanding procedure for selecting and sub. <i>a</i> , <i>b</i> and <i>c</i> expanding and arranging factorising to answer	• ¹ $4(x+2)^2 = c(5+8x)$ • ² $4x^2 + 16x - 8cx + 16 - 5c = 0$ to ans. • ¹ $b^2 - 4ac = 0$ (stated or implied) • ² $a = 4, b = 16 - 8c, c = 16 - 5c$ • ³ $64c^2 - 176c = 0$ • ⁴ $16c(4c - 11) = 0 \implies c = \frac{11}{4}$, $(c \neq 0)$	
25a	ans: • ¹ • ² • ³	k = -13 marksattempting to set up synth. div.for finding quotient for finding factor of quotient	• ¹ 3 -1 4 -4 0 9 0 • ² -1 1 -1 -3 • ³ -1 -1 1 -1 -3 1 -2 3 -1 2 -3 0 $\therefore k = -1$	
b	ans: • ¹ • ² • ³ • ⁴	$29\frac{13}{15}$ units ² 4 marks setting up correct integral integrating attempting to substitute correctly calculating the correct answer	• $\int_{-1}^{3} 9 - 4x^{2} + 4x^{3} - x^{4} dx$ • $\left[9x - \frac{4x^{3}}{3} + x^{4} - \frac{x^{5}}{5}\right]_{-1}^{3}$ • $(\dots, \dots) - (\dots, \dots)$ • $\left(23\frac{2}{5}\right) - \left(-6\frac{7}{15}\right) = 29\frac{13}{15}$	

Total 30 marks

Practice Paper C - Paper 2

Marking Scheme

	Give 1 mark for each •			Illustration(s) for awarding each mark	
1a	ans:	C(3,5)	1 mark	• ¹ C(3.5)	
b	ans:	B(6,2) establishing coords. of B	1 mark	• $B(6,2)$	
c	ans:	y = x - 4	3 marks		
	• ¹ • ² • ³	for gradient of CB (or equiv. knowing $m_1 \times m_2 = -1$, and for equation	.) m _{tan}	• $m = \frac{2-5}{6-3} = -1$ • $m_{tan} = 1$ • $y - 2 = 1(x - 6)$	
d	ans:	T(2,-2)	4 marks		
	• ¹ • ² • ³ • ⁴	setting up a system solving system correctly stating 1 root (1 ans.) = a tan completing point T	igent	• ¹ solve $x^2 + y^2 = 8$ y = x - 4 • ² $2(x-2)^2 = 0$ \therefore $x = 2$ (twice) • ³ written statement (1 ans., 1 point) • ⁴ $y = 2 - 4$ \therefore $y = -2$, T(2,-2)	
2.	ans: • ¹ • ² • ³ • ⁴ • ⁵	{75.5°, 120°, 240°, 284.5°} correct double angle sub. manipulation to factorising first angle from first factor first angle from second factor remaining two angles	5 marks	• $4(2\cos^2 x - 1) + 2\cos x + 3 = 0$ • $(4\cos x - 1)(2\cos x + 1) = 0$ • $x = 75 \cdot 5^{\circ}$ • $x = 120^{\circ}$ • $x = 240^{\circ}, 284 \cdot 5^{\circ}$	

	Give 1 mark for each •	Illustration(s) for awarding each mark	
3a	ans: 4 days 3 marks		
	 setting up recurrence knowing to look at <u>low</u> value (before +8) calculations and answer 	• ¹ $U_1 = 0.85(45) + 8$ • ² $U_1 = 0.85(45) = 38 \cdot 25 + 8 = 46 \cdot 25$ • ³ $U_4 = 0.85(48 \cdot 21) = 40.98 + 8 = 48.98$ next day low value will be > 41.	
b	ans: Yes (+ reasons from limits) 3 marks		
	• ¹ stating why limit exists	• limit exists because $-1 < a < 1$	
	• ² calculating limit	• ² $L = \frac{b}{1-a} = 53\frac{1}{3}$ (or equiv.)	
	• ³ considering upper and lower limit in conclusion (own discretion)	• ³ solution will always have a strength of between $45\frac{1}{3}$ and $53\frac{1}{3}$ g/gallon.	
4a	ans: $T_1(-1,-2)$, $T_2(1,-6)$ 4 marks		
	• ¹ knowing to differentiate	• 1 for S.P.'s $\frac{dy}{dx} = 0$ (stated or implied)	
	\bullet^2 differentiating	$\bullet^2 \frac{dy}{dx} = 3x^2 - 3$	
	• ³ solving for x coords. • ⁴ completing points	• ³ $3(x^2 - 1) = 0$: $x = \pm 1$ • ⁴ $T_1(-1, -2)$, $T_2(1, -6)$	
b	ans: A(-2,-6) , B(2,-2) 4 marks		
	• ¹ attempting to solve for x • ² using synth. div. (or trial & error) for A	• 1 for A $x^3 - 3x - 4 = -6$, etc • 2 for A -2 1 0 -3 2	
	• ³ using synth. div. (or trial & error) for B	• ³ for B 2 1 0 -3 -2	
	• ⁴ completing points	• ⁴ A(-2,-6) , B(2,-2)	
c	ans: $m_1 = m_2 = 9$ \therefore parallel 2 marks		
	• ¹ for sub. x values into derivative	• ¹ (a) A , $m = 3(-2^2) - 3 = 9$ (a) B , $m = 3(2^2) - 3 = 9$	
	• ² statement equal gradients are parallel	 ² since gradients are equal the two tangents are parallel 	

		Give 1 mark for each •		Illustrat	ion(s) for awarding each mark
5a	ans:	proof 2	2 marks		
	$ullet^1$	correct substitution		• ¹ $f(g(x))$	$(x)) = \frac{1}{\frac{1}{2}(2x^2 - 4) + 1}$
	• ²	manipulation to answer		• ² =	$\frac{1}{x^2 - 2 + 1} = \frac{1}{x^2 - 1} = \frac{1}{(x - 1)(x + 1)}$
b	ans:	$x \neq \pm 1$ 1	l mark		
	$ullet^1$	answer		• ¹ $x \neq \pm$	1
c	ans:	proof 4	4 marks		
	$ullet^1$	equating functions		\bullet^1 $\frac{1}{x^2-1}$	$= \frac{1}{\frac{1}{2}x - 1}$
	• ²	manipulation to quadratic		\bullet^2 $\frac{1}{2}x$ -	$-1 = x^2 - 1 \implies x - 2 = 2x^2 - 2$
	• ³ • ⁴	use of discriminant (or equiv.) statement/conclusion		\Rightarrow $\bullet^{3} b^{2} - 4$ $\bullet^{4} \text{ roots}$ (or equive	$2x^{2} - x - 4 = 0$ ac = 1 - (4(2)(-4)) = 33 are real, <u>distinct</u> and <u>irrational</u> alent explanation)
			2		
6a	ans:	P(1,3), $Q(3,3)$	2 m	arks	
	\bullet^1 \bullet^2	for equating solving and stating points		$ \overset{\bullet^{1}}{\bullet^{2}} \begin{array}{c} 4x - x \\ x^{2} - 4 \\ \end{array} $	$x^{2} = 3$ (or equivalent) $x + 3 = 0 \implies x = 1$ or $x = 3$ P(1,3), Q(3,3)
b	ans:	$1\frac{1}{3}$ units ² 5	5 marks		
	$ullet^1$	setting up integral		• ¹ $\int [(4x)$	$(-x^2)-3$] dx
	• ²	for limits		• ² $\int_1^3 \dots$	
	• ³	integrating		• ³ $\int 2x^2 -$	$\left[-\frac{x^3}{3}-3x\right]_{1}^{3}$
	• ⁴	for subst. Numbers		• ⁴ (18-9	$(2-9) - (2-\frac{1}{2}-3)$
	• ⁵	calculating answer		• ⁵ $1\frac{1}{3}$	
с	ans:	$9\frac{1}{3}$ units ² 3	3 marks		
	$ullet^1$	finding root for limit		• ¹ $4x - x$	$x^{2} = x(4-x) = 0$: $x = 4$
	• ²	calc. area between curve and x	-axis	• ² $\int_0^4 4x -$	$-x^2 = 10\frac{2}{3}$
	•3	subtracting for answer		• 3 10 $\frac{2}{3}$ -	$1\frac{1}{3} = 9\frac{1}{3}$

	Give 1 mark for each •	Illustration(s) for awarding each mark	
7a	ans: $h = 18 - 2r$ 1 mark		
	• ¹ answer	• ¹ $d+h=18 \implies 2r+h=18$ $\therefore h=18-2r$	
b	ans: proof 2 marks		
	 knowing to substitute for <i>h</i> processing to answer 	• $V = \frac{1}{3}\pi r^2 (18 - 2r)$ • $V = 6\pi r^2 - \frac{2}{3}\pi r^3$	
c	ans: $r = 6cm$, $V = 72\pi$ or $226 \cdot 1 \text{ cm}^3$		
	• The second state of the	• $V'(r) = 0$ at max. (stated or implied) • $V'(r) = 12\pi r - 2\pi r^2$ • $2\pi r(6-r) = 0 \therefore r = 6$, $r = 0$ • nature table showing a maximum • $V(6) = 216\pi - 144\pi = 72\pi$ cm ³	
8.	ans: 75 · 9° 5 marks		
	• ¹ for dealing with unit vector notation	• ¹ $F_1 = \begin{pmatrix} 2\\1\\-2 \end{pmatrix}$, $F_2 = \begin{pmatrix} \sqrt{3}\\0\\1 \end{pmatrix}$	
	• ² magnitude of F_1	• ² $F_1 = \sqrt{4+1+4} = 3$	
	• ³ magnitude of F_2	• $F_2 = \sqrt{3} + 1 = 2$	
	• ⁴ for scalar product • ⁵ for answer	• $F_1 \cdot F_2 = 2\sqrt{3} + 0 - 2$ • $75 \cdot 9^\circ$	

Total 60 marks