Mathematics Practice Paper C Paper 1 Assessing Units 1, 2 & 3

NATIONAL QUALIFICATIONS

Time allowed - 1 hour 30 minutes

Read carefully

Calculators may <u>NOT</u> be used in this paper.

Section A - Questions 1 - 20 (40 marks)

Instructions for the completion of Section A are given on the next page.

For this section of the examination you should use an HB pencil.

Section B (30 marks)

- 1. Full credit will be given only where the solution contains appropriate working.
- 2. Answers obtained by readings from scale drawings will not receive any credit.

FORMULAE LIST

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{(g^2 + f^2 - c)}$.

The equation $(x-a)^2 + (y-b)^2 = r^2$ represents a circle centre (a, b) and radius r.

Scalar Product: $a \cdot b = |a| |b| \cos \theta$, where θ is the angle between a and b.

 $a \cdot b = a_1 b_1 + a_2 b_2 + a_3 b_3$ where $a = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$

Trigonometric formulae:

or

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$
$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$
$$\cos 2A = \cos^2 A - \sin^2 A$$
$$= 2\cos^2 A - 1$$
$$= 1 - 2\sin^2 A$$
$$\sin 2A = 2\sin A \cos A$$

Table of standard	f(x)	f'(x)
	$\sin ax$	$a \cos ax$
	$\cos ax$	$-a \sin ax$

cos

Table of standard integrals:

$$f(x) \qquad \int f(x) \, dx$$
$$\sin ax \qquad -\frac{1}{\pi} \cos ax + C$$

$$ax \qquad \qquad \frac{1}{a}\sin ax + C$$

All questions should be answered

Section A

1. When $4x^3 + 3x - 2$ is divided by (x - 3), the remainder is

A.	25
B.	115
C.	43
D.	-119

- 2. A line has as its equation 3y = x + 6. Any line perpendicular to this line will have gradient
 - **A.** -3 **B.** -1 **C.** $-\frac{1}{3}$ **D.** $\frac{1}{3}$
- 3. Which of the following is/are true for the circle with equation $x^2 + y^2 4x + 6y 3 = 0$?
 - (1) It passes through the point (2, 1).
 - (2) It has the point (2, -3) as its centre.
 - (3) It has radius 6 units.

A.	(1) and (2)
B.	(1) and (3)
C.	(2) and (3)
D.	(1), (2) and (3)

4. If
$$f(x) = \frac{2}{x^4}$$
 and $x \neq 0$, $f'(x)$ is
A. $\frac{2}{4x^3}$
B. $-\frac{8}{x^3}$
C. $-\frac{8}{x^5}$
D. $-\frac{2}{3x^3}$

- 5. Two functions defined on suitable domains are given as $f(x) = x^2 3$ and g(x) = 3 x. f(g(x)) is equivalent to
 - A. $9-6x+x^2$ B. $6-x^2$ C. $6-6x+x^2$ D. $6+x^2$
- 6. The diagram shows the graphs of 2 functions, y = f(x) and y = g(x), which intersect at the points (-a, -b) and (c, d).

The shaded area is given by

A. $\int_{-a}^{c} (f(x) - g(x)) dx$ B. $\int_{-b}^{d} (f(x) - g(x)) dx$ C. $\int_{-a}^{c} (f(x) + g(x)) dx$ D. $\int_{-b}^{d} (f(x) + g(x)) dx$ 7. P and Q are the points (a, 7) and (1, 4) respectively on the curve with equation $y = x^2 + 3$. Given that a > 0, the gradient of PQ is

A. 3
B. -3
C.
$$\frac{1}{3}$$

D. $-\frac{1}{3}$

8. Part of the graph of y = f(x) is shown in the diagram.

The graph of f'(x) could be

9. Given that $\cos x^\circ = \frac{\sqrt{3}}{2}$ and 0 < x < 90, the exact value of $\cos 2x^\circ$ will be

A.
$$\sqrt{3}$$

B. $\frac{1}{2}$
C. $\frac{5}{2}$
D. $\frac{\sqrt{3}}{4}$

10. The tangent to the curve $y = x^3 - 2$ at the point where x = -1 has gradient

9
3
-3
1

11. The exact value of
$$\tan \frac{5\pi}{6}$$
 is

A.
$$-\sqrt{3}$$

B. $\sqrt{3}$
C. $-\frac{1}{\sqrt{3}}$
D. $\frac{1}{\sqrt{3}}$

12. The vectors $\boldsymbol{u} = \begin{pmatrix} 2 \\ -3 \\ 4 \end{pmatrix}$ and $\boldsymbol{v} = \begin{pmatrix} -1 \\ 4 \\ z \end{pmatrix}$ are perpendicular. The value of z is A. $\frac{7}{2}$ B. $\frac{1}{2}$ C. $\frac{2}{7}$ D. 2 13. $\int \sin 3x \, dx$ is

A.
$$3\cos 3x + C$$

B. $-3\cos 3x + C$
C. $\cos 3x + C$
D. $-\frac{1}{3}\cos 3x + C$

14. A recurrence relation is defined by $U_{n+1} = 0 \cdot 3U_n - 21$. The limit of this sequence as $n \to \infty$ is

A.	70
B.	-30
C.	- 70
D.	6.3

15. $\log_5 125 + \log_4 16$ is equal to

A.	5
B.	6
C.	2.5
D.	3.5

- 16. *k* and α are given by $k \sin \alpha = -1$ and $k \cos \alpha = 3$. The value of *k* and the range of values for α are
 - A. $\sqrt{10}$ and $\frac{\pi}{2} < \alpha < \pi$ B. $\sqrt{10}$ and $\frac{3\pi}{2} < \alpha < 2\pi$ C. $2\sqrt{2}$ and $\frac{\pi}{2} < \alpha < \pi$ D. $2\sqrt{2}$ and $\frac{3\pi}{2} < \alpha < 2\pi$

17. The derivative of $\frac{2}{(x^2+1)}$ with respect to x is

A.
$$\frac{2x}{(x^2+1)^2}$$

B. $-\frac{2}{(x^2+1)^2}$
C. $-\frac{4x}{(x^2+1)^2}$
D. $\frac{2}{(x^2+1)}$

18. The diagram shows part of the graph of y = f(x).

Which of the following are true for the above graph?

(1)
$$f'(0) < 0$$

(2) $f'(4) > 0$
(3) $f'(5) = 0$
A. (1) and (2)
B. (1) and (3)
C. (2) and (3)
D. (1), (2) and (3)

19. The quadratic equation $x^2 - 2kx + k = 0$ has equal roots $(k \neq 0)$. The value(s) of k is/are

A. 1
B. 0
C. 1 and 0
D. 2

20. $f(x) = ax^2 - 3x + 2$ has a stationary value where x = -2. The value of *a* is

A.
$$-\frac{3}{4}$$

B. $\frac{3}{4}$
C. -2
D. 1

Section **B**

21. Find
$$f'(x)$$
 when $f(x) = \frac{x^2 - \sqrt{x}}{x}$. (4)

22. A sketch of the graph of y = f(x) where $f(x) = x^3 - 6x^2 + 9x - 5$ is shown below. The graph has two turning points at P and Q and a y-intercept point at R.

(a) Find the equation of the tangent to the curve at R.

(b) The sketch of the derived function (y = f'(x)) from the above graph, is shown opposite.

Find the coordinates of A, B and C.

(4)

23. The parallelogram OABC, where O is the origin, has two more of its vertices at A(3,-2,1) and C(5,6,-3), as shown in the diagram.

(a) Find \overrightarrow{AC} in component form.

(b) D is a point such that
$$\overrightarrow{BD} = \begin{pmatrix} -2 \\ 6 \\ -3 \end{pmatrix}$$
.

Show that A, C and D are collinear.

24. The two cuboids below have equal volumes. All lengths are in centimetres.

(a) By equating the two volumes show that the following equation can be constructed

$$4x^{2} + (16 - 8c)x + (16 - 5c) = 0$$
(2)

(b) Given that c > 0, find the value of c for which the equation $4x^2 + (16-8c)x + (16-5c) = 0$ has equal roots. (4)

(1)

25. A modern table top is an abstract bow shape.

The table top can be modelled by a straight line and a curve. When rotated and placed on a set of rectangular axes the straight edge can be placed along the *x*-axis and the curve given the equation $y = 9 - 4x^2 + 4x^3 - x^4$, as shown below.

(4)

- (a) Given that one root of the equation $9-4x^2+4x^3-x^4=0$ is 3, find the value of the other root k. (3)
- (b) Calculate the area of the table top in square units.

[END OF QUESTION PAPER]