Mathematics Practice Paper B Paper 1 Assessing Units 1, 2 & 3

NATIONAL QUALIFICATIONS

Time allowed - 1 hour 30 minutes

Read carefully

Calculators may <u>NOT</u> be used in this paper.

Section A - Questions 1 - 20 (40 marks)

Instructions for the completion of Section A are given on the next page.

For this section of the examination you should use an HB pencil.

Section B (30 marks)

- 1. Full credit will be given only where the solution contains appropriate working.
- 2. Answers obtained by readings from scale drawings will not receive any credit.

FORMULAE LIST

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{(g^2 + f^2 - c)}$.

The equation $(x-a)^2 + (y-b)^2 = r^2$ represents a circle centre (a, b) and radius r.

Scalar Product: $a \cdot b = |a| |b| \cos\theta$, where θ is the angle between a and b.

$$a \cdot b = a_1 b_1 + a_2 b_2 + a_3 b_3$$
 where $a = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$

Trigonometric formulae: $sin(A \pm B) = sin A cos B \pm cos A sin B$

or

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$
$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$
$$\cos 2A = \cos^2 A - \sin^2 A$$
$$= 2\cos^2 A - 1$$
$$= 1 - 2\sin^2 A$$
$$\sin 2A = 2\sin A \cos A$$

Table of standard	f(x)	f'(x)
• •	$\sin ax$	$a \cos ax$
	$\cos ax$	$-a \sin ax$

 $\cos ax$

Table of standard integrals:

$$f(x) \qquad \int f(x) \, dx$$
$$\sin ax \qquad -\frac{1}{\cos ax} + C$$

$$\frac{a}{1}{a}\sin ax + C$$

Section A

1. The tangent to the curve $y = x^3 - 4$ is drawn at the point where x = -2. The gradient of this tangent is

A.	12	
B.	36	
C.	-12	
D.	0	

2. The points A(2,-1,5), B(-1,2,-1) and C(x,4,-5) are collinear. The value of x is

A.	-2
B.	-1
C.	-3
D.	-4

3.
$$\int (x^{6} + \frac{1}{x^{5}}) dx \text{ is}$$

A. $\frac{1}{7}x^{7} - \frac{1}{6x^{6}} + C$
B. $\frac{1}{7}x^{7} - \frac{1}{4x^{4}} + C$
C. $6x^{5} - \frac{5}{x^{6}} + C$
D. $\frac{1}{7}x^{7} + \frac{1}{5x^{4}} + C$

- 4. A parabola has equation $y = x^2 + 8x 2$. The minimum turning point of this parabola is
 - A. (4, 2)
 B. (-4, 2)
 C. (4, -18)
 D. (-4, -18)

5. The diagram shows a right-angled triangle with sides as shown.

The exact value of $\cos 2\alpha$ is

A.
$$\frac{51}{4}$$

B. $\frac{\sqrt{55}}{4}$
C. $\frac{23}{32}$
D. $-\frac{23}{32}$

8

√55

α

- 6. $f(x) = 4x^3 3x^{-\frac{1}{3}}, f'(x)$ equals
 - A. $x^4 \frac{9}{2}x^{\frac{2}{3}}$ B. $12x^2 + x^{-\frac{4}{3}}$ C. $4x^2 - 3x^{-\frac{4}{3}}$ D. $12x^2 + x^{\frac{2}{3}}$
- 7. Triangle ABC has vertices A(7, 5), B(-1,1) and C(-3,4). CM is a median of the triangle. The coordinates of M are
 - A. (4, 3)
 B. (3, 3)
 C. (6, 0)
 D. (4, 2)
- 8. If (x-3) is a factor of $x^3 6x^2 + px 6$, the value of p is
 - A. 0
 B. 29
 C. 11
 D. -29

9. The equation $2x^2 + x - p = 0$ has no real roots. The range of values of p is

- A. p < -8B. $p < -\frac{1}{8}$ C. $p < \frac{1}{8}$ D. p > 8
- 10. A line has equation 2x 3y = 4. The gradient of it is
 - **A.** 2 **B.** -2 **C.** $\frac{2}{3}$ **D.** $-\frac{2}{3}$

11. A circle has equation $x^2 + y^2 + 6x - 4y - 3 = 0$. The radius of this circle is

A. 7 **B.** $\sqrt{10}$ **C.** $\sqrt{55}$ **D.** 4

12. A function f is defined as $f(x) = \frac{1}{1-x^2}$. The value(s) of x for which this function in undefined

is/are

A. 0
B. 1
C. -1
D. -1 and 1

13. Here are 4 words which can be used to describe the roots of a quadratic equation

- Real
 Equal
 Unequal
- (4) Not real

Which of these words describe the roots of the quadratic equation $(x - 2)^2 = 13$?

A. (1) and (2)
B. (1) and (3)
C. (4) only
D. some other combination

14. The minimum value of
$$6\sin(x - \frac{\pi}{6}) + 4$$
 is
A. 10
B. 2
C. -2
D. -6

15. When $2x^2 - 16x + 11$ is written in the form $2(x + p)^2 + r$, the value of p is

- 16. The line with equation y = k intersects the circle with equation $x^2 + y^2 = 9$ in at least 1 point. The range of values of k is
 - A. -3 < k < 3B. -9 < k < 9C. $-3 \le k \le 3$ D. $-9 \le k \le 9$

18. The vector \mathbf{v} is given by $\mathbf{v} = \frac{1}{3}\mathbf{i} + p\mathbf{j}$ where p > 0. If \mathbf{v} is a unit vector, the value of p is

A.	$\frac{2\sqrt{2}}{3}$	B.	$\frac{2}{3}$
C.	$\frac{\sqrt{10}}{3}$	D.	$\frac{2\sqrt{2}}{9}$

19. The diagram (which is not drawn to scale) shows part of the graph of a cubic function.

The equation of the graph is

20. The function g is defined by $g(x) = 3x^2 - x^4$ where x is a real number. The rate of change of g with respect to x at x = -1 is

A. -10
B. 2
C. -2
D. 1

Section B

21. Solve algebraically the equation

$$\cos 2x^{\circ} - 6\sin x^{\circ} + 7 = 0$$
 for $0 \le x < 360$. (5)

- 22. A function is defined as $f(x) = \frac{3p}{x^2 18x + 87}$, for $x \in R$ and p is a constant.
 - (a) Express the function in the form $f(x) = \frac{3p}{(x-a)^2 + b}$, and hence state the maximum value of f in terms of p. (4)
 - (b) Given now that $p = \frac{2}{\sqrt{2} + 1}$ show that the **exact** maximum value of f is $\sqrt{2} - 1$. (2)
- 23. The sketch below shows part of the graphs of $y = \sin \theta$ and $y = \cos \theta$.

- (a) Write down the value of k in radians.
- (b) Hence show that the exact area of the shaded region is $\sqrt{2} 1$ square units. (5)

(1)

- 24. A sequence is defined by the recurrence relation $U_{n+1} = aU_n + b$, where *a* and *b* are constants.
 - (a) Given that $U_0 = 4$ and b = -8, express U_2 in terms of a. (2)
 - (b) Hence find the value of a when $U_2 = 88$ and a > 0. (3)
 - (c) Given that $S_3 = U_1 + U_2 + U_3$, calculate the value of S_3 . (2)
- **25.** Consider the diagram opposite where both θ and 2θ are acute.
 - (a) Given that $\tan \theta = \frac{1}{\sqrt{2}}$, find the exact value of
 - i) $\cos\theta$
 - ii) $\cos 2\theta$.

(b) Hence find the exact value of k.

[END OF QUESTION PAPER]