Mathematics Practice Paper A Paper 1 Assessing Units 1, 2 & 3

NATIONAL QUALIFICATIONS

Time allowed - 1 hour 30 minutes

Read carefully

Calculators may <u>NOT</u> be used in this paper.

Section A - Questions 1 - 20 (40 marks)

Instructions for the completion of Section A are given on the next page.

For this section of the examination you should use an HB pencil.

Section B (30 marks)

- 1. Full credit will be given only where the solution contains appropriate working.
- 2. Answers obtained by readings from scale drawings will not receive any credit.

FORMULAE LIST

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{(g^2 + f^2 - c)}$.

The equation $(x-a)^2 + (y-b)^2 = r^2$ represents a circle centre (a, b) and radius r.

Scalar Product: $a \cdot b = |a| |b| \cos\theta$, where θ is the angle between a and b.

$$a \cdot b = a_1 b_1 + a_2 b_2 + a_3 b_3$$
 where $a = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$

Trigonometric formulae: $sin(A \pm B) = sin A cos B \pm cos A sin B$

or

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$
$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$
$$\cos 2A = \cos^2 A - \sin^2 A$$
$$= 2\cos^2 A - 1$$
$$= 1 - 2\sin^2 A$$
$$\sin 2A = 2\sin A \cos A$$

Table of standard	f(x)	f'(x)
1 .	$\sin ax$	$a\cos ax$
	$\cos ax$	$-a\sin ax$

Table of standard integrals:

$$f(x) \qquad \int f(x) dx$$

$$\sin ax \qquad -\frac{1}{a}\cos ax + C$$
$$\cos ax \qquad \frac{1}{a}\sin ax + C$$

1. The derivative of $\frac{10x^3 - 3}{5x}$ with respect to x is

- A. $4x \frac{3}{5}x^{-2}$ B. $\frac{2}{3}x^3 - \frac{3}{5}x$ C. $4x + \frac{3}{5}x^{-2}$ D. $2x^2 - 3$
- 2. A curve has equation $y = 2x^3 5x + 1$. The gradient of the tangent to this curve at the point where x = 3 is

А.	50
В.	49
C.	40
D.	21

The diagram shows two right-angled triangles with lengths as indicated.

The value of sin(x + y) is

A.
$$-\frac{16}{65}$$

B. $\frac{56}{65}$
C. $-\frac{33}{65}$
D. $\frac{63}{65}$

- 4. A sequence is defined by the recurrence relation $U_{n+1} = aU_n 2$ with $U_0 = 3$. An expression, in terms of *a*, for U_2 is
 - A. 6a-4B. $3a^2-2$ C. 3a-2D. $3a^2-2a-2$
- 5. $k \text{ and } \alpha \text{ are given by } k \sin \alpha = 4 \text{ and } k \cos \alpha = -1 \text{ where } 0 \le \alpha \le \pi$. The value of k and the range of values for α are

A.	$\sqrt{17}$ and $\frac{\pi}{2} < \alpha < \pi$
B.	$\sqrt{17}$ and $0 < \alpha < \frac{\pi}{2}$
C.	$\sqrt{15}$ and $\frac{\pi}{2} < \alpha < \pi$
D.	$\sqrt{15}$ and $0 < \alpha < \frac{\pi}{2}$

6. A sequence is generated by the recurrence relation $U_{n+1} = 0 \cdot 6U_n + 7$. The limit of this sequence as $n \to \infty$ is

A. 7
B.
$$\frac{35}{2}$$

C. $\frac{35}{3}$
D. $\frac{2}{5}$

The shaded area can be found from

A.
$$\int_{a}^{0} (\frac{1}{2}x - f(x)) dx - \int_{0}^{b} (f(x) - \frac{1}{2}x) dx$$

B.
$$\int_{a}^{b} (f(x) - \frac{1}{2}x) dx$$

C.
$$\int_{a}^{b} (\frac{1}{2}x - f(x)) dx$$

D.
$$\int_{a}^{0} (\frac{1}{2}x - f(x)) dx + \int_{0}^{b} (f(x) - \frac{1}{2}x) dx$$

8. Which of the following expressions is equal to $2\sin(x + \frac{\pi}{3})$?

A. $\sqrt{3}\cos x - \sin x$ B. $\sqrt{3}\sin x - \cos x$ C. $\sin x - \sqrt{3}\cos x$ D. $\sin x + \sqrt{3}\cos x$

9. The diagram shows triangle ABC with altitude BD. B has coordinates (5, 11) and the gradient of CA

10. The vectors $\begin{pmatrix} 2 \\ -3 \\ 5 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ y \\ 2 \end{pmatrix}$ are perpendicular. The value of y is A. 0 B. 4

11. The integral of (3x+2)(4x-1) with respect to x is

A. $12x^{2} + 5x - 2 + C$ B. $4x^{3} + \frac{5}{2}x^{2} - 2x + C$ C. $6x^{3} + 5x^{2} - 2x + C$ D. 24x + 5 + C

12. *a* and *b* are vectors with components $\begin{pmatrix} 2 \\ 4 \\ 2 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ -2 \\ 0 \end{pmatrix}$ respectively. If the angle between *a* and *b*

is x° , the value of $\cos x^{\circ}$ is

A.
$$-\frac{2}{\sqrt{6}}$$

B. 0
C. $\frac{1}{12}$
D. $-\frac{1}{\sqrt{3}}$

13. A circle with centre (-2, 7) passes through the point (1, 3). The equation of the circle is

A. $(x+2)^2 + (y-7)^2 = 25$ B. $(x-2)^2 + (y-7)^2 = 5$ C. $(x+2)^2 + (y-7)^2 = 5$ D. $(x-2)^2 + (y+7)^2 = 25$ 14. When $4x^2 + 16x - 7$ is expressed in the form $4(x + a)^2 + b$, the value of b is

A. -4
B. -15
C. -11
D. -23

15. Two functions are defined as $f(x) = \frac{1}{x^2}$ and g(x) = -3x. f(g(x)) equals

A.
$$-\frac{1}{9x^2}$$

B. $-\frac{1}{3x^2}$
C. $\frac{1}{9x^2}$
D. $\frac{1}{3x^2}$

16. The point P(3, 1) lies on the circle with equation $x^2 + y^2 - 4x - 6y + 8 = 0$. The gradient of the tangent at point P is

A.	$-\frac{1}{2}$
B.	$\frac{1}{2}$
C.	-2
D.	2

 $17. \int 4\sin 3x \, dx \text{ equals}$

A.
$$\frac{4}{3}\cos 3x + C$$

B. $\frac{4}{3}\sin 3x + C$
C. $-\frac{4}{3}\cos 3x + C$
D. $-12\cos 3x + C$

- 18. Functions f and g are given by $f(x) = 2x^2 1$ and g(x) = 6 x. The value of g(f(3)) is
 - A. -11
 B. -29
 C. 17
 D. 35
- 19. The circle with equation $(x-3)^2 + (y+2)^2 = 16$ has centre A and the circle with equation $2x^2 + 2y^2 - 4x + 12y = 0$ has centre B. The length of AB is
 - **A.** $\sqrt{17}$ **B.** $\sqrt{5}$ **C.** $\sqrt{29}$ **D.** $\sqrt{3}$
- **20.** P, Q and R have coordinates (-1, -8, -2), (2, -5, 4) and (3, -4, 6) respectively. Here are two statements about the points.
 - (1) P, Q and R are collinear
 - (2) Q divides PR in the ratio 1 : 3

Which of these statements is/are true?

A. both statements
B. statement (1) only
C. statement (2) only
D. neither statement

Section **B**

- **21.** A sequence is defined by the recurrence relation $U_{n+1} = 0.8 U_n + 3$.
 - (a) Explain why this sequence has a limit as $n \to \infty$. (1)
 - (b) Find the limit of this sequence.
 - (c) Taking $U_0 = 10$ and L as the limit of the sequence, find n such that

$$L - U_n = 2.56 \tag{3}$$

(2)

22. Two circles, which do not touch or overlap, have as their equations

$$(x-15)^{2} + (y-6)^{2} = 40$$
 and $x^{2} + y^{2} - 6x - 4y + 3 = 0$.

(a)	a) Show that the exact distance between the centres of the two	
	circles is $4\sqrt{10}$ units.	(3)
(b)	Hence show that the shortest distance between the two circles is equal to	
	the radius of the smaller circle.	(4)

23. (a) Points E, F and G have coordinates (-1,2,1), (1,3,0) and (-2,-2,2) respectively.

Given that $3\overrightarrow{EF} = \overrightarrow{GH}$, find the coordinates of the point *H*. (3)

(b) Hence calculate
$$|\vec{EH}|$$
. (2)

24. Solve algebraically the equation

$$3\cos 2x^{\circ} - 9\cos x^{\circ} = 12$$
 for $0 \le x < 360$. (6)

25. (a) Given that
$$2\log_x y = \log_x 2y + 2$$
 find a relationship connecting x and y. (4)

(b) Hence find y when
$$x = \frac{1}{4}y$$
 and $y > 0$. (2)

END OF QUESTION PAPER