[C100/SQP328]

Mathematics Higher Paper 1 Specimen Marking Instructions Example 2 based on 2004 Examination Paper (for examinations from Diet 2008 onwards)

NATIONAL QUALIFICATIONS

Note: In the Specimen Marking Instructions the Marking Scheme indicates which marks awarded are strategy marks (ss), which marks awarded are processing marks (pd) and which marks awarded are interpretation and communication marks (ic).

1	В	$m = \frac{p - (-5)}{7 - 4}$	
		$3 = \frac{p+5}{3} \Longrightarrow p = 4$	2 marks
2	С	$u_1 = u_0 + 5 = -3 + 5 = 2$ $u_2 = u_1 + 5 = 2 + 5 = 7$	2 marks
3	С	$y = -\frac{2}{3}x + \frac{1}{3}, \ m = -\frac{2}{3}$ $m = \frac{3}{2}$	2 marks
4	A	$f(-3) = (-3)^3 - (-3)^2 - 5(-3) - 3$ f(-3) = -24	2 marks
5	A	$x^{2} - 16x + 64 - 37$ (x - 8) ² - 37 q = -37	2 marks
6	A	$\frac{2}{3}(8-2x^2)^{-\frac{1}{3}} \times (-4x)$	
		$\frac{-8x}{3(8-2x^2)^{\frac{1}{3}}}$	2 marks
7	D	$f(x) = (x - 1)(x^{2} - 4x - 5)$ f(x) = (x - 1)(x - 5)(x + 1)	2 marks
8	С	$L = "\frac{b}{1-a}"$ $L = \frac{3}{1-a+1} = 5$	
9	C	$1 - 0 \cdot 4$ $x = \pi - \frac{\pi}{3} = \frac{2\pi}{3}$	2 marks
		$x = 2\pi - \frac{\pi}{3} = \frac{5\pi}{3}$	2 marks

10	A	$\overrightarrow{PQ} = \begin{pmatrix} 2\\ 4\\ -4 \end{pmatrix}, \overrightarrow{QR} = \begin{pmatrix} 1\\ 2\\ -2 \end{pmatrix}$	
		$\overrightarrow{PQ} = \overrightarrow{2QR}$ $\overrightarrow{PQ} = 2 \overrightarrow{QR}$	2 marks
		$\Gamma Q: QK = 2:1$	2 11121 KS
11	Α	$y = \frac{1}{2}x$, gradient $= \frac{1}{2}$	
		$p = \tan^{-1}\left(\frac{1}{2}\right)$	2 marks
12	D	$g'(x) = (x+1)^2$	
		$g'(x) \ge 0$ for all x so g is never decreasing	2 marks
10			
13	A	$\frac{\log_2(x+1) - \log_2 9}{\log_2\left(\frac{x+1}{2}\right)}$	
			2 marks
14	D	reflect original in the axis;	2 marks
			2 1114113
15	В	$\overrightarrow{OT} = \overrightarrow{OP} + \frac{1}{2}\overrightarrow{PQ}$ (1)	
		$\overrightarrow{PQ} = \begin{pmatrix} 1\\2\\ \end{pmatrix} \text{ so } \overrightarrow{OT} = \begin{pmatrix} \frac{1}{2}\\4\\ \end{pmatrix}$	
		(2) (0)	2 marks
		\rightarrow $\begin{pmatrix} 2 \\ \end{pmatrix}$ \rightarrow $\begin{pmatrix} 8 \\ \end{pmatrix}$	
16	D	$AB = \begin{bmatrix} 4 \\ -4 \end{bmatrix} \text{ and } AD = \begin{bmatrix} 16 \\ -16 \end{bmatrix}$	
		A = $(-3, 4, 7)$ and so D = $(5, 20, -9)$	2 marks
17	C	substitute (3, –18)	
		$-18 = k \times 3 \times (3 - 6)$ $\implies k = 2$	2 marks
		$\rightarrow n - 2$	

18	В	$\frac{dy}{dx} = 3 \times -\sin(5x) \times 5$	
		$\frac{dy}{dx} = -15\sin(5x)$	2 marks
19	Α	$\frac{1}{\frac{3}{2}} \times (4x+1)^{\frac{3}{2}} divided by 4$	
		$\frac{1}{6}(4x+1)^{\frac{3}{2}} + c$	2 marks
20	A	$\frac{2}{3}(3+1)^{\frac{1}{2}} - \frac{2}{3}(0+1)^{\frac{1}{2}}$	
		$\frac{2}{3} \times \sqrt{4} - \frac{2}{3} \times \sqrt{1} = \frac{2}{3}$	2 marks

[END OF SECTION A]

Qu	The Primary Method m/s is based on the following generic m/s. THIS GENERIC M/S MAY BE USED AS AN EQUIVALENCE GUIDE BUT ONLY WHERE A CANDIDATE DOES NOT USE THE PRIMARY METHOD OR ANY ALTERNATIVE METHOD SHOWN IN DETAIL IN THE MARKING SCHEME.	Primary Method: Give 1 mark for each •
21	 (a) 7 marks (b) 2 marks •¹ ss: know to differentiate •² pd: differentiate •³ ss: know to set derivative to zero •⁴ pd: process •⁵ pd: process •⁶ ic: justify using eg nature table •⁷ ia: interpret nature table 	• $\frac{dy}{dx} =$ • $$
	 • Ic: Interpret nature table •⁸ ic: sketch •⁹ ic: sketch 	• ⁷ max at $x = -3$, min at $x = 1$ • ⁸ diagram with max/min correct • ⁹ diagram with (0, 5) and (-5, 0) correct 2 marks
22	 4 marks •¹ ss: use the log laws •² ss: transfer from log to exponential •³ pd: start to solve equation •⁴ pd: complete solving 	• $\log_x 32 = 5$ • $32 = x^5$ • $x = \sqrt[5]{32}$ • $x = \sqrt[5]{32}$ • $4 marks$
23	 5 marks •¹ ss: know to use double angle formula •² pd: factorise •³ pd: solve •⁴ ic: interpret solutions •⁵ ic: interpret solutions 	• ¹ $2\sin x \cos x - \cos x = 0$ • ² $\cos x(2\sin x - 1) = 0$ • ³ $\cos x = 0$ $\sin x = \frac{1}{2}$ • ⁴ $x = \frac{\pi}{2}$ $x = \frac{\pi}{6}$ • ⁵ $x = \frac{3\pi}{2}$ $x = \frac{5\pi}{6}$ 5 marks

Qu	The Primary Method m/s is based on the following generic m/s. THIS GENERIC M/S MAY BE USED AS AN EQUIVALENCE GUIDE BUT ONLY WHERE A CANDIDATE DOES NOT USE THE PRIMARY METHOD OR ANY ALTERNATIVE METHOD SHOWN IN DETAIL IN THE MARKING SCHEME.	Primary Method: Give 1 mark for each •
24	7 marks	
	 ¹ ic: interpret diagram ² pd: expand trig expression ³ pd: simplify ⁴ ss: use appropriate formula ⁵ pd: process ⁶ ic: interpret ⁷ pd: simplify 	• ¹ $D\hat{E}A = (2x^{\circ} + 90^{\circ})$ • ² $\cos(2x^{\circ})\cos(90^{\circ}) - \sin(2x^{\circ})\sin(90^{\circ})$ • ³ $-\sin(2x^{\circ})$ • ⁴ $-2\sin(x^{\circ})\cos(x^{\circ})$ • ⁵ $CE = \sqrt{1^2 + 3^2} = \sqrt{10}$ $stated/implied by •^6$ • ⁶ $\sin(x^{\circ}) = \left(\frac{1}{\sqrt{10}}\right)$ $and \cos(x^{\circ}) = \frac{3}{\sqrt{10}}$ • ⁷ $\cos D\hat{E}A = -2\left(\frac{1}{\sqrt{10}}\right)\left(\frac{3}{\sqrt{10}}\right) = -\frac{6}{10}$ 7 marks
		 Note 1 Although unusual, it would be perfectly acceptable for a candidate to go from •¹ to •³ without expanding (via knowledge of transformations). In this case •² would be awarded by default.

1 common wrong solution	2 another common wrong solution
• ¹ $\checkmark D\hat{E}A = (2x^\circ + 90^\circ)$ • ² $\checkmark \cos(2x^\circ)\cos(90^\circ) - \sin(2x^\circ)\sin(90^\circ)$	$\bullet^{1} \checkmark D\hat{E}A = (2x^{\circ} + 90^{\circ})$ $\cos(2x^{\circ} + 90^{\circ})$
$\cos(2x^\circ) \times 1 - \sin(2x^\circ) \times 0$ • ³ × cos(2x^o)	• ² $\times \cos(2x^\circ) + \cos(90^\circ)$ • ³ $\times \cos(2x^\circ)$ [working eased]
• ⁴ $\checkmark eg 2\cos^2 x - 1$	• ⁴ $\checkmark eg 2\cos^2 x - 1$
$V CE = \sqrt{1 + 3} = \sqrt{10}$ stated/implied by \bullet^6	$CE = \sqrt{1 + 3} = \sqrt{10}$ stated/implied by • ⁶
• ⁶ $\cos(x^{\circ}) = \frac{3}{\sqrt{10}}$ • ⁷ $\cos D\hat{E}A = 2\left(\frac{3}{\sqrt{10}}\right)\left(\frac{3}{\sqrt{10}}\right) - 1 = \frac{8}{10}$	• ⁶ $\cos(x^{\circ}) = \frac{3}{\sqrt{10}}$ •7 $\cos D\hat{E}A = 2\left(\frac{3}{\sqrt{10}}\right)\left(\frac{3}{\sqrt{10}}\right) - 1 = \frac{8}{10}$
6 marks awarded	5 marks awarded

Qu	The Primary Method m/s is based on the following generic m/s. THIS GENERIC M/S MAY BE USED AS AN EQUIVALENCE GUIDE BUT ONLY WHERE A CANDIDATE DOES NOT USE THE PRIMARY METHOD OR ANY ALTERNATIVE METHOD SHOWN IN DETAIL IN THE MARKING SCHEME.	Primary Method: Give 1 mark for each •
25	5 marks • ¹ ss: know to integrate • ² pd: express in integrable form • ³ pd: interpret • ⁴ ss: introduce constant and substitute • ⁵ pd: process	• ¹ $f(x) = \int (6x(x-2)) dx$ • ² $\int (6x^2 - 12x) dx$ • ³ $2x^3 - 6x^2$ • ⁴ $4 = 2 \times 1^3 - 6 \times 1^2 + c$ • ⁵ $c = 8$ 5 marks
		Note 1 $\int_{0}^{2} 6x(x-2)dx = [2x^{3}-6x^{2}]_{0}^{2} = -8$ may be awarded \bullet^{1} , \bullet^{2} and \bullet^{3} .

[END OF SECTION B]

[END OF SPECIMEN MARKING INSTRUCTIONS]