[C100/SQP248]

Higher Mathematics Units 1, 2 and 3 Paper 2 Specimen Marking Instructions **(Revised)**

NATIONAL QUALIFICATIONS

Note: In the Specimen Marking Instructions the Marking Scheme indicates which marks awarded are strategy marks (st), which marks awarded are processing marks (pr) and which marks awarded are interpretation and communication marks (ic).

011	Marking Scheme	Illustrations of evidence
Qu	Give 1 mark for each •	for awarding a mark at each •
1	ans: $y = -2x - 5$ 4 marks	
	 ¹ st: know to use gradient formula ² pr: use gradient formula ³ ic: know parallel lines have equal gradients ⁴ ic: state equation of st. line 	• $m = \frac{y_2 - y_1}{x_2 - x_1}$ • $m_{AB} = 2$ • $m_{DC} = 2$ • $y - 11 = 2(x - 8)$
2	ans: Pestkill 6 marks	
	 ¹ ic: state the scaling factor ² ic: interpret the constant in recurrence relation ³ ic: state recurrence relation ⁴ st: know how to find limit ⁵ pr: complete strategy for limits ⁶ ic: limit condition & conclusion 	 •¹ 0·4 •² au_n + 300 •³ 0·2u_n + 360 •⁴ eg L = aL + b •⁵ 500 and 450 •⁶ limits are valid since a < 1 in both cases and Pestkill more effective
3a	ans: $2(x+2)^2 - 11$ 3 marks	
	 ¹ pr: start with a eg 2(x² + 4x) ² pr: continue for b eg 2(x + 2)² ³ pr: complete by finding c 	• ¹ $a = 2$ • ² $b = 2$ • ³ $c = -11$
3b	ans: (-2, 11) 1 mark	
	• ⁴ ic: state turning point of $a(x+b)^2 + c$	• ⁴ (-2, 11)

Ou	Marking Scheme	Illustrations of evidence
<u></u>	Give 1 mark for each •	for awarding a mark at each •
4a	ans: $y = -5x - 3$ 4 marks	
	 ¹ st: know to differentiate ² pr: differentiate ³ pr: evaluate gradient ⁴ ic: state equation of tangent 	• $\frac{dy}{dx} =$ • $\frac{dy}{dx} = 3x^2 - 2x - 6$ • $\frac{dy}{dx} = -5$ • $\frac{dy}{dx} = -5$ • $\frac{dy}{dx} = -5$
4b	ans: B = (-1,2) 5 marks	
	 •⁵ st: know how to find intersection •⁶ pr: produce cubic in standard form •⁷ st: know how to solve cubic •⁸ pr: achieve linear and quadratic factor •⁹ ic: interpret coordinates 	 ⁵ attempt to simplify and equate y's ⁶ x³ - x² - x + 1 = 0 ⁷ evidence of eg synthetic division ⁸ (x - 1)(x² - 1) ⁹ B = (-1,2)
	ans: area = $1\frac{1}{3}$ 5 marks	
	 ¹⁰ st: know to subtract: "upper-lower" ¹¹ ic: state limits of integration ¹² pr: integrate ¹³ ic: interpret limits ¹⁴ pr: evaluate limits 	
		$-\left(\frac{1}{4}(-1) - \frac{1}{3}(-1) - \frac{1}{2}(-1) + (-1)\right)$ • ¹⁴ 1 $\frac{1}{3}$

Qu	Marking Scheme	Illustrations of evidence
	Give I mark for each •	for awarding a mark at each •
5a	 ans: 9 4 marks •¹ ic: interpret lengths and angle •² pr: evaluate scalar product 	• ¹ $ \boldsymbol{p} = \boldsymbol{q} = 3$, VÂD = 60°
	 ³ st: know to use distributive law ⁴ pr: evaluate scalar product & complete 	• $\frac{2}{2}$ • $\frac{3}{p}.q + p.r$ • $\frac{4}{9}$
5b	ans: proof 4 marks	
	 ⁵ ic: interpret 3D representation ⁶ st: know to use approp. scalar product ⁷ st: know to use distributive law ⁸ pr: evaluate scalar product & complete 	• ⁵ $p - q - r$ • ⁶ $p. (p - q - r)$ • ⁷ $p.p - p.(q + r)$ • ⁸ 0
6a	ans: $\sqrt{13}\cos(x-56\cdot 3)^\circ$ 4 marks	
	 •¹ ic: state expansion •² ic: compare & equate coefficients •³ pr: solve for <i>k</i> •⁴ pr: solve for α 	• $k \cos x \cos \alpha + k \sin x \sin \alpha$ explicitly stated • $k \cos \alpha = 2$ and $k \sin \alpha = 3$ explicitly stated • $k = \sqrt{13}$ • $\alpha = 56 \cdot 3$
6b	ans: 138.8, 334.3 3 marks	
	 •⁵ st: know how to solve trig. equation •⁶ pr: solve for <i>x</i> – α •⁷ pr: complete solving process 	• ⁵ $\cos(x - 56 \cdot 3)^{\circ} = \frac{0 \cdot 5}{\sqrt{13}}$ • ⁶ $x - 56 \cdot 3 = 82 \cdot 0, 278 \cdot 0$ • ⁷ $x = 138 \cdot 3, 334 \cdot 3$
6c	ans: 146·3° 2 marks	
	 ⁸ st: know how to set function = 0 ⁹ pr: complete solving process 	• ⁸ $\sqrt{13}\cos(x-56\cdot3)^\circ = 0$ • ⁹ $x = 146\cdot3$

Qu	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each •
7a	ans: proof 3 marks	
	 •¹ st: know to use approp. trig. rule •² st: know to use approp. trig. rule •³ ic: complete the proof 	 •¹ substitute 1 - 2 sin² x° for cos 2x° •² substitute 1 - sin² x° for cos²x° •³ complete proof
7b	ans: 19.5 4 marks	6
	 ⁴ st: know to express in standard form ⁵ pr: factorise quadratic ⁶ pr: continue solving process ⁷ ic: complete solving process 	• ⁴ $3\sin^2 x^\circ + 2\sin x^\circ - 1 = 0$ • ⁵ $(3\sin x^\circ - 1)(\sin x^\circ + 1) = 0$ • ⁶ $x = \frac{1}{3}$ and $x = -1$ • ⁷ $x = 19.5$ and no other answers
8	ans: $k = -5$ or 3 5 mark	s
	 •¹ st: know to express in standard form •² st: know condition for equal roots •³ pr: apply the strategy •⁴ pr: start the solving process •⁵ pr: complete the solving process 	• ¹ $x^{2} + kx - x + 4 - k = 0$ • ² $b^{2} - 4ac = 0$ • ³ $(k-1)^{2} - 4(4-k)$ • ⁴ $k^{2} + 2k - 15 = 0$ • ⁵ $k = -5, k = 3$

Qu	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each •
9ai	ans: $h = \frac{1}{2}(10 - \pi x - 2x)$ 2 marks • ¹ st: know to form equ. for perimeter • ² pr: make <i>h</i> the subject	• ¹ eg 2h + 2x + semicircle = 10 • ² $h = \frac{1}{2}(10 - \pi x - 2x)$
9aii	ans: proof2 marks•3 st: know how to set up equ. for L•4 ic: complete proof	• ³ $L = 2 \times 2xh + \frac{1}{2}\pi x^{2}$ • ⁴ $L = 4x \times \frac{1}{2}(10 - \pi x - 2x) + \frac{1}{2}\pi x^{2}$ $L = 20x - 2\pi x^{2} - 4x + \frac{1}{2}\pi x^{2}$
9b	ans: $x = \frac{20}{3\pi + 8}$, $h = \frac{5(\pi + 4)}{3\pi + 8}$ 6 marks • ⁵ st: know to differentiate • ⁶ pr: differentiate • ⁷ st: know that max. means $L' = 0$ • ⁸ pr: solve $L' = 0$ • ⁹ st: know to check nature of max/min • ¹⁰ ic: complete evaluation	• ⁵ $\frac{dL}{dx} =$ • ⁶ $\frac{dL}{dx} = 20 - 8x - 3\pi x$ • ⁷ $\frac{dL}{dx} = 0$ • ⁸ $x = \frac{20}{3\pi + 8} = x_0 (= 1 \cdot 148)$ • ⁹ eg $\begin{bmatrix} x & x_0^- & x_0 & x_0^+ \\ L' &+ & 0 & - \\ maximum \text{ at } x_0 & & \\ \end{bmatrix}$ • ¹⁰ $h = \frac{5\pi + 20}{3\pi + 8} (= 2 \cdot 049)$
10	ans: $Y = 3X + 0.7$ 3 marks	
	 ¹ ic: interpret gradient from graphs ² st: know how to find "<i>c</i>" ³ pr: complete evaluation 	• ¹ $m = 3$ • ² $eg \ 7.00 = 3 \times 2.10 + c$ • ³ $eg \ Y = 3X + 0.7$

[END OF SPECIMEN MARKING INSTRUCTIONS]