[C100/SQP248]

Higher Time: 1 hour 10 minutes Mathematics Units 1, 2 and 3 Paper 1 (Non-calculator) Specimen Question Paper **(Revised)** for use in and after 2004 NATIONAL QUALIFICATIONS

Read Carefully

- 1 Calculators may NOT be used in this paper.
- 2 Full credit will be given only where the solution contains appropriate working.
- 3 Answers obtained by readings from scale drawings will not receive any credit.

FORMULAE LIST

Circle:

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$.

The equation $(x - a)^2 + (y - b)^2 = r^2$ represents a circle centre (a, b) and radius r.

Scalar Product: $a.b = |a| |b| \cos \theta$, where θ is the angle between a and b

or
$$\boldsymbol{a}.\boldsymbol{b} = a_1b_1 + a_2b_2 + a_3b_3$$
 where $\boldsymbol{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $\boldsymbol{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$.

Trigonometric formulae: $\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$ $\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$ $\sin 2A = 2\sin A \cos A$ $\cos 2A = \cos^2 A - \sin^2 A$ $= 2\cos^2 A - 1$ $= 1 - 2\sin^2 A$

Table of standard derivatives:

f(x)	f'(x)
sin <i>ax</i>	$a\cos ax$
$\cos ax$	$-a\sin ax$

Table of standard integrals:

f(x)	$\int f(x)dx$
sin ax	$-\frac{1}{a}\cos ax + C$
$\cos ax$	$\frac{1}{a}\sin ax + C$

(2)

1. P(-4, 5), Q(-2, -2) and R(4, 1) are the vertices of triangle PQR as shown in the diagram. Find the equation of PS, the altitude from P.

- 2. A sequence is defined by the recurrence relation $u_{n+1} = 0.3u_n + 5$ with first term u_1 .
 - (a) Explain why this sequence has a limit as n tends to infinity. (1)
 - (b) Find the **exact** value of this limit.

3.	(<i>a</i>)	Show that $(x - 1)$ is a factor of $f(x) = x^3 - 6x^2 + 9x - 4$ and find the other factors.	(4)
	(<i>b</i>)	Write down the coordinates of the points at which the graph of $y = f(x)$ meets the axes.	(2)
	(<i>c</i>)	Find the stationary points of $y = f(x)$ and determine the nature of each.	(5)
	(d)	Sketch the graph of $y = f(x)$.	(1)

4. If x° is an acute angle such that $\tan x^{\circ} = \frac{4}{3}$, show that the exact value of $\sin(x+30)^{\circ}$ is $\frac{4\sqrt{3}+3}{10}$. (4)

Marks

(7)

(7)

5. The diagram shows the rhombohedral crystal lattice of calcium carbonate.

The three oxygen atoms P, Q and R around the carbon atom A have coordinates as shown.

- (a) Show that the cosine of angle PQR is $\frac{1}{2}$.
- (b) M is the midpoint of QR and T is the point which divides PM in the ratio 2:1.
 - (i) Find the coordinates of T.
 - (ii) Show that P, Q and R are equidistant from T.
- 6. A bakery firm makes ginger-bread men each 14 cm high with a circular "head" and "body". The equation of the "body" is $x^2 + y^2 - 10x - 12y + 45 = 0$ and the line of centres is parallel to the *y*-axis.

Find the equation of the "head".

7. Find the value of
$$\int_{1}^{2} \frac{u^2 + 2}{2u^2} du$$
. (7)

8. Sketch the graph of
$$y = 2\sin(x - 30)^{\circ}$$
 for $0 \le x < 360$. (4)

9. Find
$$\frac{dy}{dx}$$
 given that $y = \sqrt{1 + \cos x}$. (3)

10. Part of the graph of $y = 4 \log_3(5x + 3)$ is shown in the diagram. This graph crosses the *x*-axis at the point A and the straight line y = 8 at the point B.

Find the *x*-coordinate of B.

(3)

[END OF SPECIMEN QUESTION PAPER]