Paper 2

Question	Generic Scheme	Illustrative Scheme	Max Mark
1(a)			
• 1 calculate gr	adient of AB	$\bullet^1 \ m_{AB} = -3$	
• ² use property	y of perpendicular lines	$\bullet^2 \ m_{alt} = \frac{1}{3}$	
• ³ substitute in	nto general equation of a line	$\bullet^3 y-3=\frac{1}{3}(x-13)$	
• 4 demonstrate	e result	$\bullet^4 \dots \Rightarrow x - 3y = 4$	4

- 1. 3 is only available as a consequence of trying to find and use a perpendicular gradient.
- 2. 4 is only available if there is/are appropriate intermediate lines of working between 3 and \bullet^4 .
- 3. The ONLY acceptable variations for the final equation for the line in $ullet^4$ are 4 = x - 3y, -3y + x = 4, 4 = -3y + x.

Commonly Observed Responses:

Candidate A

Caldidate A
$$m_{AB} = \frac{-1 - (-5)}{-5 - 7} = \frac{4}{-12} = -\frac{1}{3}$$

$$m_{alt} = 3$$

$$y - 3 = 3(x - 13)$$
• 1

• 2

• 1

• 3

• 1

• 4

• 4

×

• 4 is not available

Candidate B

For
$$\bullet^4$$

$$y-3 = \frac{1}{3}x - \frac{13}{3}$$

$$y = \frac{1}{3}x - \frac{4}{3}$$

$$3y = x - 4$$
 - not acceptable
$$3y - x = -4$$
 - not acceptable
$$x - 3y = 4 \checkmark$$

Question	Generic Scheme	Illustrative Scheme	Max Mark
1(b)			
• 5 calculate i	midpoint of AC	$\bullet^5 M_{AC} = (4,5)$	
• 6 calculate (gradient of median	$\bullet^6 m_{BM} = 2$	
• 7 determine	equation of median	$\bullet^7 y = 2x - 3$	3

- 4. and are not available to candidates who do not use a midpoint.
- 5. 7 is only available as a consequence of using a non-perpendicular gradient and a midpoint.
- 6. Candidates who find either the median through A or the median through C or a side of the triangle gain 1 mark out of 3.
- 7. At \bullet^7 accept y (-5) = 2(x (-1)), y 5 = 2(x 4), y 2x + 3 = 0 or any other rearrangement of the equation.

Commonly Observed Responses:

continionly observed responses.	
Median through A	Median through C
$\mathbf{M}_{BC} = (6, -1)$	$\mathbf{M}_{AB} = (-3,1)$
$m_{AM} = \frac{-8}{11}$	$m_{CM} = \frac{1}{8}$
$y+1 = \frac{-8}{11}(x-6)$ or $y-7 = \frac{-8}{11}(x+5)$	$y-3=\frac{1}{8}(x-13)$ or $y-1=\frac{1}{8}(x+3)$
Award 1/3	Award 1/3
1(c)	
_	

- 8 calculate x or y coordinate
- 9 calculate remaining coordinate of the point | 9 v = -1 or x = 1of intersection
- 8 x = 1 or y = -1

Notes:

8. If the candidate's 'median' is either a vertical or horizontal line then award 1 out of 2 if both coordinates are correct, otherwise award 0.

Commonly Observed Responses:

For candidates who find the altitude through B in part (b)

$$x = -\frac{7}{5}$$
$$y = -\frac{7}{5}$$

Candidate A
$$v-5=20$$

(b)
$$y-5 = 2(x-4)$$
 • 7 \checkmark $y = 2x-13$ -error

(c)
$$x-3y=4$$

 $y=2x-13$

Leading to x = 7 and y = 1

Question	Generic Scheme	Illustrative Scheme	Max Mark
2 (a)			
•¹ interpret no	tation	• $^1 f((1+x)(3-x)+2)$ stated or implied by • 2	
• 2 state a corre	ect expression	• 2 10+(1+x)(3-x)+2 stated or implied by • 3	2

1. \bullet^1 is not available for g(f(x)) = g(10+x) but \bullet^2 may be awarded for (1+10+x)(3-(10+x))+2.

•⁶ **√**1

•⁷ **√**1

Commonly Observed Responses:

Candidate A

(a)
$$f(g(x)) = g(f(x))'$$

= $(1+10+x)(3-(10+x))+2$

(b) =
$$-75 - 18x - x^2$$
 or $-x^2 - 18x - 75$

$$= -(x^2 + 18x)$$

$$= -(x+9)^2$$

$$= -(x+9)^2 + 6$$

(c)
$$-(x+9)^2 + 6 = 0$$

 $x = -9 + \sqrt{6}$ or $-9 - \sqrt{6}$

Candidate B

Candidate C

$$-9 + \sqrt{6}$$
 or $-9 - \sqrt{6}$

2 (b)

•
3
 write $f(g(x))$ in quadratic form

Method 1

- 4 identify common factor
- 5 complete the square

Method 2

- 4 expand completed square form and equate coefficients
- \bullet ⁵ process for q and r and write in required form

$\bullet^3 15 + 2x - x^2$ or $-x^2 + 2x + 15$

Method 1

- 4 -1(x^2 -2x stated or implied by \bullet^5
- $\bullet^5 -1(x-1)^2 +16$

Method 2

- $^4 px^2 + 2pqx + pq^2 + r$ and p = -1,
- 5 q = -1 and r = 16Note if $p = 1 \bullet^5$ is not available

3

2. Accept $16 - (x-1)^2$ or $-\lceil (x-1)^2 - 16 \rceil$ at \bullet^5 .

Commonly Observed Responses:

Candidate A $-(x^{2}-2x-15) \qquad \bullet^{4} \checkmark$ $-(x^{2}-2x+1-1-15)$ $-(x-1)^{2}-16 \qquad \bullet^{5} \times$

Candidate B $15 + 2x - x^2$ $x^2 - 2x - 15$ • 4 ×

$$x^2 - 2x - 15$$
 $px^2 + 2pqx + pq^2 + r$ and $p = 1$
 $q = -1$ $r = -16$
 f eased

Candidate C

$$-x^{2} + 2x + 15$$
 $-(x+1)^{2} ...$ $-(x+1)^{2} + 14$ $-3 \checkmark$ $-(x+1)^{2} + 14$ $-3 \checkmark$

Candidate D

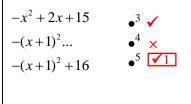
$$15+2x-x^2$$
 $x^2-2x-15$
 $4 \times (x-1)^2-16$

• 2 eased

Eased, unitary coefficient of x^2 (lower level skill)

$$\begin{array}{cccc}
15 + 2x - x^{2} & & & & & & & & & & & & \\
x^{2} - 2x - 15 & & & & & & & & & \\
(x - 1)^{2} - 16 & & & & & & & & \\
\text{so } 15 + 2x - x^{2} & = -(x - 1)^{2} + 16
\end{array}$$

Candidate F



2(c)

• 6 identify critical condition	$\bullet^6 -1(x-1)^2 +16 = 0$	
	or $f((g(x)) = 0$	
• ⁷ identify critical values	\bullet ⁷ 5 and -3	2

Notes:

Candidate A

- 3. Any communication indicating that the denominator cannot be zero gains ●6.
- 4. Accept x = 5 and x = -3 or $x \ne 5$ and $x \ne -3$ at \bullet^7 .
- 5. If x = 5 and x = -3 appear without working award 1/2.

Commonly Observed Responses:

$\frac{1}{-(x-1)^2 + 16}$ $x \neq 5$	• ⁶ ✓ • ⁷ ∧

Candidate B

$$\frac{1}{f(g(x))}$$

$$f(g(x)) > 0$$

$$x = -3, x = 5$$

$$-3 < x \quad x < 5$$

$$\bullet^{6} \times$$

$$\bullet^{7} \checkmark$$

3(a)

Notes:

- 1. Do not penalise the inclusion of incorrect units.
- 2. Accept rounded and unsimplified answers following evidence of correct substitution.

Question	Generic Scheme	Illustrative Scheme	Max Mark
3 (b)			
	Method 1 (Considering both limits)	Method 1	
		2 32 . 1. 22	
• know how	to calculate limit	$\bullet^2 \frac{32}{1-\frac{1}{3}} \text{ or } L = \frac{1}{3}L + 32$	
• 3 know how	to calculate limit	$\bullet^3 \frac{13}{1-\frac{3}{4}} \text{ or } L = \frac{3}{4}L + 13$	
• 4 calculate I	imit	• 4 48	
• 5 calculate I	imit	• ⁵ 52	
• 6 interpret li	mits and state conclusion	• 6 52 > 50 : toad will escape	
(Frog f	Method 2 irst then numerical for toad)	Method 2	
• ² know how	to calculate limit		
• 3 calculate I	imit	• 3 48	
• 4 determine than 50	the value of the highest term less	• ⁴ 49·803	
greater tha		• ⁵ 50 · 352	
• 6 interpret in	nformation and state conclusion	• 6 50 · 352 > 50 : toad will escape	
(Nume	Method 3 erical method for toad only)	Method 3	
• ² continues r	numerical strategy	• numerical strategy • 30.0625	
• 3 exact value	9	• ⁴ 49·803	
• determine than 50	the value of the highest term less	5 70 070	
• 5 determine	the value of the lowest term	• ⁵ 50·352	
greater tha	an 50 Information and state conclusion	• 6 50 · 352 > 50 : toad will escape	
- interpret ii		Method 4	
<i>(</i> 1	Method 4 imit method for toad only)		
	now to calculate limit	$\bullet^2 \& \bullet^3 \frac{13}{1 - \frac{3}{4}} \text{ or } L = \frac{3}{4}L + 13$	
• 4 & • 5 calcula	ate limit	• ⁴ & • ⁵ 52	
• 6 interpret li	mit and state conclusion	• 6 52 > 50 : toad will escape	5

- •6 is unavailable for candidates who do not consider the toad in their conclusion.
- For candidates who only consider the frog numerically award 1/5 for the strategy.

Commonly Observed Responses:

Error with frogs limit - Frog Only

$$L_{F} = \frac{34}{1 - \frac{1}{3}} \quad \begin{array}{c} \bullet^{2} \times \\ \bullet^{3} \times \\ \bullet^{4} \checkmark \end{array}$$

$$L_F = 51$$
 • $5 \sqrt{1}$ 51 > 50 • $6 \sqrt{1}$

∴ frog will escape.

Using Method 3 -**Toad Only**

- •⁴ missing ^
- •⁵ 50⋅352... ✓ \bullet^6 50.352 > 50

so the toad escapes.

Using Method 3-**Toad Only**

- •² ✓ •³ ✓
- 4 missing ^
- 50·1..rounding error ×
- \bullet^6 50.1 > 50 so the toad escapes.

Using Method 3 - Toad Only

- •² ✓
- •³ ✓
- \bullet^4 49 · 7.. rounding error ×
- 5 50·1... **1**
- \bullet^6 50.1 > 50
- so the toad escapes.

Toad Conclusions

Limit = 52

This is greater than the height of the well and so the toad will escape - award •6.

However

Limit =52 and so the toad escapes - •6 ^.

Iterations

$$f_1 = 32$$
 $t_1 = 13$ $t_2 = 22.75$

$$f_3 = 46 \cdot 222 \qquad \qquad t_3 = 30 \cdot 0625$$

$$f_4 = 47 \cdot 407 \qquad | \quad t_4 = 35 \cdot 547$$

$$f_5 = 47.802$$
 $t_5 = 39.660$ $t_6 = 47.934$ $t_6 = 42.745$

$$f_6 = 47.934$$
 $t_6 = 42.745$
 $f_7 = 47.978$ $t_7 = 45.059$

$$f_8 = 47.993$$
 $t_8 = 46.794$

$$f_9 = 47.998$$
 $t_9 = 48.096$

$$t_{10} = 49.072$$

$$t_{11} = 49.804$$

$$t_{12} = 50.353$$

Question	Generic Scheme	Illustrative Scheme	Max Mark
4 (a)			
• 1 know to ed	quate $f(x)$ and $g(x)$		
• Solve for)		$\bullet^2 x = 2$	2

•¹ and •² are not available to candidates who: (i) equate zeros, (ii) give answer only without working, (iii) arrive at x = 2 with erroneous working.

Commonly Observed Responses:

Candidate A $y = \frac{1}{4}x^2 - \frac{1}{2}x + 3$ $y = \frac{1}{4}x^2 - \frac{3}{2}x + 5$

subtract to get

$$0 = x - 2$$

$$x = 2$$
•²

Candidate B

$$\frac{1}{4}x^2 - \frac{1}{2}x = -3$$
1 2 3

$$\frac{1}{4}x^2 - \frac{3}{2}x = -5 \qquad \bullet^1 \times$$

$$x = 2$$
 $\bullet^2 \times$

In this case the candidate has equated zeros

Candidate C

$$f(x) = \frac{1}{4}x^{2} - \frac{1}{2}x + 3$$

$$g(x) = \frac{1}{4}x^{2} - \frac{3}{2}x + 5$$

$$f'(x) = \frac{1}{2}x - \frac{1}{2}$$

$$g'(x) = \frac{1}{2}x - \frac{3}{2}$$

$$\vdots \quad x = 2$$

Question	Generic Scheme	Illustrative Scheme	Max Mark
4 (b)			
• ³ know to int	egrate	• 3 \int 2	
• 4 interpret li	mits	• 4 ∫	
• 5 use 'uppe	r - lower'	• 5	
		$\int_{0}^{2} \left(\frac{1}{4}x^{2} - \frac{1}{2}x + 3\right) - \left(\frac{3}{8}x^{2} - \frac{9}{4}x + 3\right) dx$	
• 6 integrate		• $^6 - \frac{1}{24}x^3 + \frac{7}{8}x^2$ accept unsimplified integral	
• ⁷ substitute	limits	$\bullet^7 \left(-\frac{1}{24} \times 2^3 + \frac{7}{8} \times 2^2 \right) - 0$	
 evaluate a state tota 	area between $f(x)$ and $h(x)$ I area	• 8 <u>19</u> 6	7

- 2. If limits x = 0 and x = 2 appear ex nihilo award \bullet^4 .
- 4. If a candidate differentiates at •⁶ then •⁶, •⁷ and •⁸ are not available. However, •⁹ is still available.
- Candidates who substitute at •⁷, without attempting to integrate at •⁶, cannot gain •⁶, •⁷ or •⁸. However, •⁹ is still available.
- 6. Evidence for •8 may be implied by •9.
- 7. 9 is a strategy mark and should be awarded for correctly multiplying their solution at 8, or for any other valid strategy applied to previous working.
- 8. For ●5 both a term containing a variable and the constant term must be dealt with correctly.
- 9. In cases where ●⁵ is not awarded, ●⁶ may be gained for integrating an expression of equivalent difficulty ie a polynomial of at least degree two. ●⁶ is unavailable for the integration of a linear expression.
- 10. 8 must be as a consequence of substituting into a term where the power of x is not equal to 1 or 0.

Commonly Observed Responses:

Candidate A - Valid Strategy

Candidates who use the strategy:

Total Area = Area A + Area B

Then mark as follows:

™Mark Area A for •3 to •8 then mark Area B for •3 to •8 and award the higher of the two • 9 is available for correctly adding two equal areas.

Candidate B - Invalid Strategy

For example, candidates who integrate each of the four functions separately within an invalid strategy

Gain • 4 if limits correct on

$$\int f(x) \text{ and } \int h(x)$$
or
$$\int g(x) \text{ and } \int k(x)$$

• 5 is unavailable

Gain ●⁶ for calculating either

$$\int f(x) \text{ or } \int g(x)$$
and
$$\int h(x) \text{ or } \int k(x)$$

Gain • 7 for correctly substituting at least twice Gain •8 for evaluating at least two integrals correctly

• s unavailable

Candidate C

$$\int_{0}^{2} \left(\frac{1}{4}x^{2} - \frac{1}{2}x + 3 - \frac{3}{8}x^{2} - \frac{9}{4}x + 3\right) dx$$

$$\int_{0}^{2} \left(-\frac{1}{8}x^{2} - \frac{11}{4}x\right) dx \qquad \bullet^{5} \checkmark$$

$$\int_{0}^{2} \left(-\frac{1}{8} x^{2} - \frac{11}{4} x \right) dx \qquad \bullet^{5}$$

$$\frac{-1}{24}x^3 - \frac{11}{8}x^2$$
 • 6 ×

Candidate D

$$\int_{0}^{2} \left(\frac{1}{4}x^{2} - \frac{1}{2}x + 3 - \frac{3}{8}x^{2} - \frac{9}{4}x + 3\right) dx$$

$$\int_{0}^{2} \left(-\frac{1}{8}x^{2} - \frac{11}{4}x + 6\right) dx \qquad \bullet^{5} \times$$

$$\int_{0}^{2} \left(-\frac{1}{8}x^{2} - \frac{11}{4}x + 6 \right) dx \qquad \bullet^{5} \times$$

$$-\frac{1}{24}x^{3} - \frac{11}{8}x^{2} + 6x$$
Candidate F

Candidate E

$$\int ... = -\frac{1}{3} \text{ cannot be negative so} = \frac{1}{3} \bullet^{8} \times$$
however, $= -\frac{1}{3} \text{ so Area} = \frac{1}{3}$

$$\bullet^{8} \checkmark \qquad \begin{cases} \int_{0}^{2} (\frac{1}{4}x^{2} - \frac{1}{2}x + 3 - \frac{3}{8}x^{2} - \frac{9}{4}x + 3) dx \\ \int_{0}^{2} (-\frac{1}{8}x^{2} + \frac{7}{4}x) dx \end{cases} \bullet^{5} \checkmark$$

however,
$$=-\frac{1}{3}$$
 so Area $=\frac{1}{3}$

$$\int_{0}^{2} \left(\frac{1}{4} x^{2} - \frac{1}{2} x + 3 - \frac{3}{8} x^{2} - \frac{9}{4} x + 3 \right) dx$$

$$\int_{0}^{2} \left(-\frac{1}{8}x^{2} + \frac{7}{4}x \right) dx \qquad \bullet^{5}$$

Question	Generic Scheme	Illustrative Scheme	Max Mark
5(a)			
• 1 state cent	re of C ₁	• 1 (-3,-5)	
• 2 state radiu	us of C ₁	• ² 5	
• 3 calculate C ₂	distance between centres of C ₁ and	•³ 20	
• 4 calculate r	radius of C ₂	• ⁴ 15	4

- For •⁴ to be awarded radius of C₂ must be greater than the radius of C₁.
 Beware of candidates who arrive at the correct solution by finding the point of contact by an invalid strategy.
- 3. 4 is for Distance $c_{c1c2} r_{c1}$ but only if the answer obtained is greater than r_{c1} .

Question	Generic Scheme	Illustrative Scheme	Max Mark
5 (b)			
	o in which centre of C_3 divides line entres of C_1 and C_2		
• 6 determin	e centre of C ₃	• 6 (6,7)	
• 7 calculate	eradius of C ₃	• ⁷ r = 20 (answer must be consistent with distance	
• 8 state equ	uation of C ₃	between centres) • $(x-6)^2 + (y-7)^2 = 400$	4

- 4. For \bullet^5 accept ratios $\pm 3:\pm 1, \pm 1:\pm 3, \mp 3:\pm 1, \mp 1:\pm 3$ (or the appearance of $\frac{3}{4}$).
- 5. 7 is for $r_{c2} + r_{c1}$.
- 6. Where candidates arrive at an incorrect centre or radius from working then ●⁸ is available. However •8 is not available if either centre or radius appear ex nihilo (see note 5).
- 7. Do not accept 20^2 for \bullet^8 .
- 8. For candidates finding the centre by 'stepping out' the following is the minimum evidence for \bullet^5 and \bullet^6 : (9,11).

Correct 'follow through' using the ratio 1:3 -

Correct answer using the ratio 3:1 -16

Commonly Observed Responses:

Candidate A

using the mid-point of centres: 65

centre
$$C_3 = (3,3)$$

12

radius of $C_3 = 20$

$$(x-3)^2 + (y-3)^2 = 400$$

Candidate B

 $C_1 = (-3, -5)$ r = 20

$$C_3 = \frac{1}{4} \begin{pmatrix} 0 \\ -4 \end{pmatrix}$$

16

$$C_3 = (0, -1)$$

$$x^2 + (y+1)^2 = 400$$

Candidate C - touches C₁ internally only

- \bullet centre $C_3 = (3,3) \times$
- radius of C_3 = radius of C_2 = 15 \checkmark 1
 $8(x-3)^2 + (y-3)^2 = 225$ \checkmark 1
- Candidate D touches C, internally only
- \bullet centre $C_3 = (3,3) \times$
- radius of C_3 = radius of C_1 = 5 \checkmark 1 $8(x-3)^2 + (y-3)^2 = 25 <math>\checkmark$ 1

Candidate E - centre C_3 collinear with C_1, C_2

- e.g. centre $C_3 = (21,27) \times$
- radius of $C_3 = 45$ (touch C_1 internally only) $\checkmark 1$ $8(x-21)^2 + (y-27)^2 = 2025$

Question	Generic Scheme	Illustrative Scheme	Max Mark
6 (a)			·
• 1 Expands		\bullet^1 p. q + p. r	
• ² Evaluate		• $4\frac{1}{2}$	
• ³ Completes evaluation		• $3 \dots + 0 = 4\frac{1}{2}$	3

1. For $\mathbf{p}.(\mathbf{q}+\mathbf{r}) = \mathbf{p}\mathbf{q} + \mathbf{p}\mathbf{r}$ with no other working \bullet^1 is not available.

Commonly Observed Responses:

	T		
6 (b)			
• 4 correct expression		\bullet^4 - q + p + r or equivalent	1
6 (c)			
● ⁵ correct s	ubstitution	\bullet ⁵ -q.q+q.p+q.r	
• 6 start evaluation		$ \bullet^6 - 9 + \dots + 3 \mathbf{r} \cos 30^\circ = 9\sqrt{3} - \frac{9}{2}$	
$ullet^7$ find expression for $ {f r} $		$\bullet^7 \mathbf{r} = \frac{3\sqrt{3}}{\cos 30}$	3

Notes:

2. Award \bullet^5 for $-\mathbf{q}^2+\mathbf{q}\cdot\mathbf{p}+\mathbf{q}\cdot\mathbf{r}$

Commonly Observed Responses:

$$-\mathbf{q} \cdot \mathbf{q} + \mathbf{q} \cdot \mathbf{p} + \mathbf{q} \cdot \mathbf{r} = 9\sqrt{3} - \frac{9}{2}$$

$$-9 + \frac{9}{2} + 3|\mathbf{r}|\cos 150^{\circ} = 9\sqrt{3} - \frac{9}{2}$$

$$|\mathbf{r}| = \frac{3\sqrt{3}}{\cos 150}$$

Candidate B

$$-\mathbf{q} \cdot \mathbf{q} + \mathbf{q} \cdot \mathbf{p} + \mathbf{q} \cdot \mathbf{r} = 9\sqrt{3} - \frac{9}{2}$$

$$-9 + \frac{9}{2} + 3|\mathbf{r}|\cos 30^{\circ} = 9\sqrt{3} - \frac{9}{2}$$

$$|\mathbf{r}| = 6$$

Question	Generic Scheme	Illustrative Scheme	Max Mark
7 (a)			
• ¹ integrate a • ² complete i	a term ntegration with constant	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2
Notes:			

Commonly Observed Responses:

7 (b)

- \bullet ³ substitute for cos 2x
- substitute for 1 and complete

$n^2 x$

2

Notes:

- 1. Any valid substitution for $\cos 2x$ is acceptable for \bullet^3 .
- 2. Candidates who show that $4\cos^2 x 2\sin^2 x = 3\cos 2x + 1$ may gain both marks.
- 3. Candidates who quote the formula for $\cos 2x$ in terms of A but do not use in the context of the question cannot gain \bullet^3 .

Commonly Observed Responses:

Candidate A

Candidate B

$$4\cos^{2} x - 2\sin^{2} x = 2(\cos 2x + 1) - (1 - \cos 2x) \quad \bullet^{3} \checkmark$$

$$= 3\cos 2x + 1 \quad \bullet^{4} \checkmark$$

7 (c)

- •⁵ interpret link
- state result

- $-\frac{3}{4}\sin 2x \frac{1}{2}x + c$

2

Notes:

Commonly Observed Responses:

Candidate A

$$\int \sin^2 x - 2\cos^2 x \, dx$$

$$= \int (3\cos 2x + 1) \, dx \quad \bullet^5 \times$$

$$\frac{3}{2}\sin 2x + x + c \quad \bullet^6 \times$$

$$\frac{3}{2}\sin 2x + x + c$$

Question	Generic Scheme	Illustrative Scheme	Max Mark
8 (a) (i)			
• ¹ calculate	T when $x = 20$	● ¹ 10·4 or 104	1
8 (a) (ii)			
• 2 calculate T when $x = 0$		• ² 11 or 110	1

- 1. Accept correct answers with no units.
- 2. Accept $5\sqrt{436}$ or $10\sqrt{109}$ or equivalent for T(20) .
- 3. For correct substitution alone, with no calculation \bullet^1 and \bullet^2 are not available.
- 4. For candidates who calculate T when x = 0 at \bullet^1 then \bullet^2 is available as follow through for calculating T when x = 20 in part(ii).

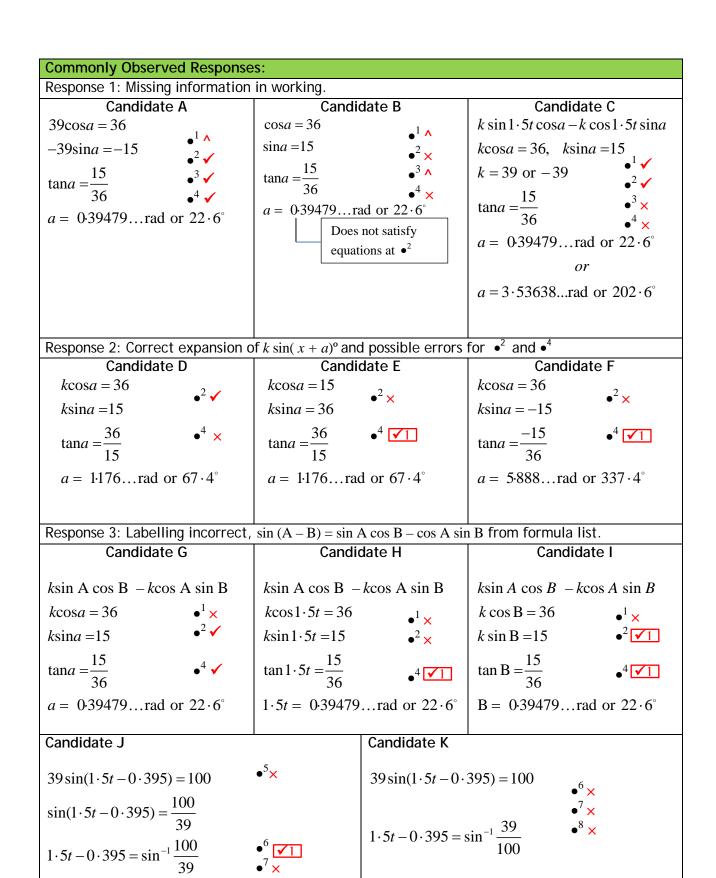
- a) (i) $10.4 \cdot 4 \checkmark$ See note 1
 - (ii) $110 \bullet^2 \checkmark$
- b) leading to $9.8 \, \text{seconds}$ $\bullet^{10} \times \, \text{See note 7}$

Question	Generic Scheme	Illustrative Scheme	Max Mark
8 (b)			
	• 3 write function in differential form	$\bullet^3 5(36 + x^2)^{\frac{1}{2}} + \dots$	
	• 4 start differentiation of first term	$\bullet^4 5 \times \frac{1}{2} ()^{\frac{1}{2}}$	
	• 5 complete differentiation of first term		
	• 6 complete differentiation and set candidate's derivative = 0		
	• 7 start to solve	$\int_{0.7}^{7} \text{ or } \frac{5x}{(36 + x^2)^{\frac{1}{2}}} = 4$	
	• 8 know to square both sides	$25x^{2} = 16(36 + x^{2})$ or $\frac{25x^{2}}{(36 + x^{2})} = 16$	
	 ⁹ find value of x ¹⁰ calculate minimum time 	• 9 $x = 8$ • 10 T = 9.8 or 98 no units required	
Notos			8

- Incorrect expansion of $(...)^{\frac{1}{2}}$ at stage \bullet^3 only \bullet^6 and \bullet^{10} are available as follow through. 5.
- 6.
- Incorrect expansion of $(...)^{-\frac{1}{2}}$ at stage \bullet^7 only \bullet^{10} is available as follow through. Where candidates have omitted units, then \bullet^{10} is only available if the implied units are 7. consistent throughout their solution.
- •10 is only available as a follow through for a value which is less than the values obtained 8. for the two extremes.

Question	Generic Scheme	Illustrative Scheme Max Mark
9.		
•¹ use compou •² compare co	nd angle formula efficients	• $k \sin 1.5t \cos a - k \cos 1.5t \sin a$ • $k \cos a = 36, k \sin a = 15 \text{ stated}$ explicitly
• process for • process for	a	• $k = 39$ • $a = 0.39479$ rad or 22.6° • 5
• equates exp	pression for h to 100	
• write in star solve	ndard format and attempt to	$39\sin(1.5t - 0.39479) + 65 = 100$ $\bullet 6 \sin(1.5t - 0.39479) = \frac{35}{39}$
• solve equation	ion for $1.5t$	
• ⁸ process solu	itions for t	$\Rightarrow 1.5t - 0.39479 = \sin^{-1}\left(\frac{35}{39}\right)$
		$ \bullet^{7} \qquad \bullet^{8} $ $ 1 \cdot 5t = 1 \cdot 508 \text{and} 2 \cdot 422 $
		•8 $t = 1.006$ and 1.615 8

- 1. Treat $k \sin 1.5t \cos a \cos 1.5t \sin a$ as bad form only if the equations at the \bullet^2 stage both contain k.
- 2. $39\sin 1.5t\cos a 39\cos 1.5t\sin a$ or $39(\sin 1.5t\cos a \cos 1.5t\sin a)$ is acceptable for \bullet^1 and \bullet^3
- 3. Accept $k\cos a = 36$ and $-k\sin a = -15$ for \bullet^2 .
- 4. is not available for $k \cos 1.5t = 36$ and $k \sin 1.5t = 15$, however, is still available.
- 5. 3 is only available for a single value of k, k > 0.
- 6. \bullet^4 is only available for a single value of a.
- 7. The angle at •⁴ must be consistent with the equations at •² even when this leads to an angle outwith the required range.
- 8. Candidates who identify and use any form of the wave equation may gain \bullet^1 , \bullet^2 and \bullet^3 , however, \bullet^4 is only available if the value of a is interpreted for the form $k \sin(1.5t a)$.
- 9. Candidates who work consistently in degrees cannot gain •8.
- 10. Do not penalise additional solutions at •8.
- 11. On this occasion accept any answers which round to $1\cdot 0$ and $1\cdot 6$ (2 significant figures required).



[END OF MARKING INSTRUCTIONS]