Detailed Marking Instructions for each question

Question	Generic Scheme	Illustrative Scheme	Max Mark		
1.					
	• ¹ equate scalar product to zero	• ¹ $-24 + 2t + 6 = 0$	2		
	• ² state value of t	• $^{2} t = 9$			
Notes:					
Commonly (Observed Responses:				
Candidate A					
-24 + 2t + 6	$=-1$ $\bullet^1 \times$				
$t = \frac{17}{2}$ or $8\frac{1}{2}$	• ² 1				
	·				
2.					
	 ¹ know to and differentiate 	$\bullet^1 6x^2$	4		
	• ² evaluate $\frac{dy}{dx}$	• ² 24			
	 ³ evaluate y-coordinate 	• ³ -13			
	 ⁴ state equation of tangent 	• ⁴ $y = 24x + 35$			
Notes:					
 • Is only available if an attempt has been made to find the gradient from differentiation. At mark •⁴ accept y+13 = 24(x+2), y-24x = 35 or any other rearrangement of the equation. 					
Commonly Observed Responses:					

3. • ¹ know to use $x = -3$ • ² interpret result and state conclusion • Method 1 • $(-3)^3 - 3(-3)^2 - 10(-3) + 24$ • $(-3)^3 - 3(-3)^2 - 10(-3) + 24$	4				
• ¹ know to use $x = -3$ • ² interpret result and state conclusion Method 1 • ¹ $(-3)^3 - 3(-3)^2 - 10(-3) + 24$ • ² $= 0 \therefore (x+3)$ is a factor. Method 2	4				
• ¹ know to use $x = -3$ • ² interpret result and state conclusion • 1 $(-3)^3 - 3(-3)^2 - 10(-3) + 24$ • 2 $= 0 \therefore (x+3)$ is a factor. Method 2					
• Interpret result and state conclusion $e^2 = 0 \therefore (x+3)$ is a factor. Method 2					
conclusion Method 2					
motiou L					
•1					
-3 1 - 3 - 10 24					
$\left \frac{-3}{1} \right $					
•2					
-3 1 - 3 - 10 24					
$\frac{-3}{1-6}$					
remainder = 0 : $(x+3)$ is a factor					
Method 3					
x^2					
• $1 x+3 \overline{)x^3-3x^2-10x+24}$					
$x^3 + 3x^2$					
• $^2 = 0 \therefore (x+3)$ is a factor.					
• ³ state quadratic factor $x^2 - 6x + 8$ stated or implied by • ⁴					
• state quadratic factor • $(x+3)(x-4)(x-2)$					
• ⁴ factorise completely					
Notes: 1. Communication at e^2 must be consistent with working at that stage is a candidate's working at the stage is a candidate's working at the stage is a candidate.	kina				
must arrive legitimately at 0 before \bullet^2 is awarded.	King				
2. Accept any of the following for \bullet^2 :					
f(-3) = 0 so $(x+3)$ is a factor'					
isince remainder is 0, it is a factor the word (factor) by equivalence (i) is $i \to i \to i \to i$					
3. Do not accept any of the following for \bullet^2 :					
double underlining the zero or boxing the zero without comment					
x = 3 is a factor', ' $(x-3)$ is a factor', ' $x = -3$ is a root', ' $(x-3)$ is a root', " $(x+3)$ is a ro	ot"				
the word 'factor' only, with no link 4. At e^4 the expression may be written in any order					
5. An incorrect quadratic correctly factorised may gain \bullet^4					
6. Where the quadratic factor obtained is irreducible, candidates must clearly demonstrate					
that $b^2 - 4ac < 0$ to gain \bullet^4					
1. = 0 must appear at • or • for • to be awarded. 8. For candidates who do not arrive at 0 at the e^2 stage $e^2e^3e^4$ not available.					
9. Do not penalise candidates who attempt to solve a cubic equation. However, within					
this working there may be evidence of the correct factorisation of the cubic.					

Quest	tion	Generic Scheme	Illustrative Scheme	Max Mark	
6.					
			1 1	3	
		 ¹ use laws of logs 	• $\log_6 27^3$		
		 ² use laws of logs 	$\begin{pmatrix} 1 \end{pmatrix}$		
		3 ovaluato log	$\bullet^2 \log_6 \left(12 \times 27^3 \right)$		
		evaluate log			
Notes	•		• 2		
Comn	nonly C	bserved Responses:			
Candi	date A		Candidate B		
$\log_6 1$	$2 + \log_{e}$	$5^9 \bullet^1 \times$	$1_{\log((12\times 27))}$		
log_(12×9)	● ² √ 1	$\frac{-\log_6(12 \times 27)}{3}$		
	<u></u>	● ³ ₹ 2	1,		
$\log_6 1$	00		$-\log_6 324$		
			1		
			$\log_6 324^{\overline{3}}$		
			Award 1 out of 3 $^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{$		
7.			- <u>-</u>		
		• ¹ write in differentiable form	$1 - \frac{3}{2} - 1$	4	
			• $3x^2 - 2x^2$	-	
		 ² differentiate first term 	$e^2 \frac{9}{2}x^{\frac{1}{2}} + \dots$		
			2		
		 ³ differentiate second term 	• 3 + 2 x^{-2}		
			1		
		• ⁴ evaluate derivative at $x = 4$	$\bullet^4 9\frac{1}{8}$		
Notes	:		0		
1.	● ² mu	st involve a fractional index.			
2.	● ³ mu	st involve a negative index.			
3.	\bullet^4 is c	only available as a consequence of	substituting into a 'derivative' contain	ing a	
	fracti	onal or negative index.	C C	Ū	
4.	lf no	attempt has been made to expand	the bracket at \bullet^1 then $\bullet^2 \& \bullet^3$ are not as	vailable.	
	\bullet^4 is s	till available as follow through.			
Comn	nonly C	bserved Responses:			
Candi	date A				
f(x)	$=3x^{\frac{1}{2}}-$	$2x^{-\frac{1}{4}}$			
	3 _1	- 1			
f'(x)	$f'(x) = \frac{3}{2}x^2 + \frac{1}{2}x^4$ $\bullet^1 \times e^2$				
	$=\frac{3}{\sqrt{2}}+\frac{1}{\sqrt{2}}$				
	$2\sqrt{x} 2\sqrt[4]{x^3} \mathbf{e}^4 \checkmark 1$				
f'(4)	$f'(4) = \frac{3}{2\sqrt{4}} + \frac{1}{2\sqrt[4]{4^5}}$				
	3 1				
	$=\frac{-}{4}$ +	$\overline{8\sqrt{2}}$			
-					

Question	Generic Scheme	Illustrative Scheme	Max Mark
8.			
	 ¹ interpret information 	• $x(x-2) < 15$	4
	 ² express in standard quadratic form 	• $x^2 - 2x - 15 < 0$	
	• ³ factorise	• ³ $(x-5)(x+3) < 0$	
	● ⁴ state range	• $^{4} 2 < x < 5$	
Notes:			
Commonly	Observed Responses:		-
Candidate	$\mathbf{A} \mathbf{\bullet}^1 \times$	Candidate B - Mistaking perimeter	for area
x(x-2) = 1	² ∠ ²	4x - 4 < 15	
$x^2 - 2x - 13$	$5=0$ \bullet^3 \checkmark 1	$x < \frac{19}{4}$	
x = -3, 5	• ⁻ ^	4 Award 1/4	
Candidate	С	Candidate D	
$x^2 - 2x < 1$	5	$x^2 - 2x < 15$ Inequalities not	
x > 2		x > 2 linked by 'and'	
Award 1/4		r < 5	
		Award 2/4	
Candidate	E		
$x^2 - 2x < 1$	5		
x > 2	Inequalities linked by		
and	'and'		
x < 5 Award 4/4			

Question	Generic Scheme	Illustrative Scheme	Max Mark		
9.					
	• ¹ find gradient of AB	1 /2	3		
	- ma gradione of AB	• $m_{AB} = -\sqrt{3}$	•		
	• ² calculate gradient of BC	2 11 1			
	calculate gradient of De	$m_{\rm BC} = -\frac{1}{\sqrt{3}}$			
	 ³ interpret results and state conclusion 	• $m_{AB} \neq m_{BC} \Rightarrow$ points are not collinear.			
		Method 2 • $m_{\rm AD} = -\sqrt{3}$			
		AB			
		• ² AB makes 120° with positive direction of the $x - axis$.			
		2			
		 ³ 120 ≠ 150 so points are not collinear. 			
Notos					
1 Tho st	atomont made at a ³ must be consid	stant with the gradients or angles foun	d for		
		stent with the gradients of angles roun			
• and	•- <u>.</u>				
Commonly O	oserved Responses:				
10(a)					
10(a).					
	• ¹ state value of $\cos 2x$	• 1 $\frac{4}{5}$	1		
Notes:		5	I		
Commonly O	oserved Responses:				
Candidate A		Candidate B			
3	1	$\cos 2x = 4$			
$\cos 2x = \frac{c}{5}$	• ¹ ×				
3	● ² √ 1	$2\cos^2 x - 1 = 4$ $\bullet^2 \checkmark 1$			
$2\cos^2 x - 1 = .$	·· ● ³ ▼1	2 5			
2		$\cos^{-}x = -\frac{1}{2}$			
$\cos x = \frac{1}{\sqrt{5}}$					
ν5		$\cos x = \sqrt{\frac{5}{2}}$ $\bullet^3 \times$ invalid answ	ver		
10(b).		, –			
			2		
	 use double angle formula 	• $2\cos^2 x - 1 = \dots$	2		
	3 augusts	³ <u>3</u>			
	• evaluate $\cos x$	$\sqrt{10}$			
Notes:					
	3				
1. Ignore the inclusion of $-\frac{1}{\sqrt{10}}$.					
2. At ● ² t	ne double angle formula must be e	equated to the candidates answer to pa	art (a).		
Commonly Ol	oserved Responses:				

Question		Generic Scheme	Illustrative Scheme	Max Mark	
11(a).					
		 ¹ state coordinates of centre 	• ¹ (-8,-2)	4	
		 ² find gradient of radius 	• $^{2} -\frac{1}{2}$		
		 ³ state perpendicular gradient 	• ³ 2		
		 ⁴ determine equation of tangent 	• $y = 2x - 1$		
Notes:				1	
1. ● ⁴ is or	nly av	ailable as a consequence of trying	to find and use a perpendicular gradi	ient.	
2. At mar	⁻ k ● ⁴ a	ccept $y + 5 = 2(x+2)$, $y - 2x = -1$, $y-2x+1=0$ or any other rearrange	ment of	
the eq	uatio	n.			
Commonl	ly Ob	served Responses:			

Question	Generic Scheme	Illustrative Scheme	Max Mark	
11(b).				
11(b).	 Method 1 ⁵ arrange equation of tangent in appropriate form and equate y_{tangent} to y_{parabola} ⁶ rearrange and equate to 0 ⁷ know to use discriminant and identify a, b, and c ⁸ simplify and equate to 0 ⁹ start to solve ¹⁰ state value of p 	Method 1 • ⁵ $2x-1 = -2x^2 + px + 1 - p$ • ⁶ $2x^2 + (2-p)x + p - 2 = 0$ • ⁷ $(2-p)^2 - 4 \times 2 \times (p-2)$ • ⁸ $p^2 - 12p + 20 = 0$ • ⁹ $(p-10)(p-2) = 0$ • ¹⁰ $p = 10$	6	
Notos:	Method 2 • ⁵ arrange equation of tangent in appropriate form and equate $y_{tangent}$ to $y_{parabola}$ • ⁶ find $\frac{dy}{dx}$ for parabola • ⁷ equate to gradient of line and rearrange for p • ⁸ substitute and arrange in standard form • ⁹ factorise and solve for x • ¹⁰ state value of p	Method 2 Method 2 $5^{5} 2x - 1 = -2x^{2} + px + 1 - p$ $6^{6} \frac{dy}{dx} = -4x + p$ $7^{2} = -4x + p$ p = 2 + 4x $8^{8} 0 = 2x^{2} - 4x$ $9^{9} 0 = 2x(x - 2)$ x = 0, x = 4 $10^{10} p = 10$		
1. At • ⁶ accept $2x^2 + 2x - px + p - 2 = 0$. 2. At • ⁷ accept $a = 2, b = (2 - p)$, and $c = (p - 2)$. Commonly Observed Responses: Just using the parabola a = -2 $b = p$ $c = 1 - pb^2 - 4ac = p^2 - 4 \times (-2)(1 - p)= p^2 - 8p + 8 = 0p = 4 \pm \sqrt{8}p = 4 + \sqrt{8} as p > 3$				

Question	Generic Scheme	Illustrative Scheme	Max Mark
12.			
	 ¹ interpret integral below 	• 1 -1 (accept area below $x - axis = 1$)	2
	x - axis	1	
	• ² evaluate	$2 - \frac{1}{2}$	
Nataa		2	
NOTES:	2		
1. For candid	dates who calculate the area as $\frac{3}{2}$	award 1 out of 2.	
Commonly C	bserved Responses:		
13(a)			
13(0)	$\frac{1}{2}$ colouloto h	- 1 <i>c</i>	1
Notes		• 5	I
10103.			
Commonly C	bserved Responses:		
			1
13 (b)(i)			
	• ² reflecting in the line $y = x$	• ² y $f(x) = 2^{x} + 3$ q p(1, b) $y = f^{-1}(x)$	ix
Notes:		2	
1. If the	reflected graph cuts the $y - axis$,	• is not awarded.	
Commonly C	boservea kesponses:		

Quest	tion	Generic Scheme	Illustrative Scheme	Max Mark
13(b))(ii)			
		• ³ calculate y intercept	• ³ 4	3
		• ⁴ state coordinates of image of Q	• ⁴ (4, 0) see note 2	
		 ⁵ state coordinates of image of P 	• ⁵ (5, 1)	
Notes	:			
2.	● ⁴ can diagra	only be awarded if (4,0) is clearly m.	identified either by their labelling or	by their
3.	\bullet^3 is a	warded for the appearance of 4, or	(4,0) or (0,4).	
4.	● ⁵ is av	warded for the appearance of (5,1).	. Ignore any labelling attached to thi	s point.
Comn	nonly Ol	oserved Responses:		
Candi	date A		Candidate B	
y = f	(x) refle	ected in $x - axis$	y = f(x) reflected in y – axis	
4	• ³	✓	4 ● ³ ✓	
(0,-4)	• ⁴	✓ 2	(0,4) ● ⁴ ✓ 2	
(1,-5)	• ⁵	✓1	(-1,5) ● ⁵ ✓ 2	
13(c)				
		• ⁶ state x coordinate of R	$\bullet^6 x = 2$	2
		• ⁷ state y coordinate of R	• $^{7} y = -7$	
Notes	:			
•				
Comn	nonly Ob	oserved Responses:		
14				
		¹ identify length of radius	· · · · · · · · · · · · · · · · · · ·	2
		• identify length of radius e^2 determine value of h	y - axis tangent to circle through origin	2
			$\bullet^1 r = 6 \qquad \qquad r = \sqrt{61}$	
			• $^{2} k = 25$ $k = 0$	

Question	Generic Scheme	Illustrative Scheme	Max Mark		
15.					
	 ¹ know to integrate 	• ¹ ∫	6		
	• ² integrate a term	• $\frac{1}{50}t^2$ or kt			
	 ³ complete integration 	• ³ – kt or $\frac{1}{50}t^2$			
	 ⁴ find constant of integration 	• $^{4} c = 100$			
	• ⁵ find value of k	• ⁵ $k=2$			
	 ⁶ state expression for T 	⁶ $T = \frac{1}{50}t^2 - 2t + 100$			
Notes:	<u> </u>				
 Accept un 4⁴, ●⁵ and integratio 1^a may be 	 isimplified expressions at •² and •³ st •⁶ are not available for candidates on. implied by •². 	age. who have not considered the constan	t of		
Commonly C	Commonly Observed Responses:				

[END OF MARKING INSTRUCTIONS]