Detailed Marking Instructions for each question

Question			Expected Response (Give one mark for each •)	Max mark	Additional Guidance (Illustration of evidence for awarding a mark at each •)		
1	(a)		$u_1 = 8$ and $u_2 = -4$	1			
			• ¹ find terms of sequence		• $u_1 = 8$ and $u_2 = -4$		
1	(b))	p=2 or $q=-3$	3			
			• ² interpret sequence		• 2 eg 4 <i>p</i> + <i>q</i> =5 and 5 <i>p</i> + <i>q</i> =7		
			ullet ³ solve for one variable		• ³ $p=2$ or $q=-3$		
			$ullet^4$ state second variable		• ⁴ $q = -3$ or $p = 2$		
Note	S		1 Candidates may use $7p + q = 11$ as one of their equations at \bullet^2 . 2 Treat equations like $p4 + q = 5$ or $p(4) + q = 5$ as bad form. 3 Candidates should not be penalised for using $u_{n+1} = pu_n + q$.				
1	(c)	(i)	l = 0, -1	3			
			● ⁵ know how to find a valid limit		• ⁵ $l = -\frac{1}{2}l$ or $l = \frac{0}{1 - \left(-\frac{1}{2}\right)}$		
			 ⁶ calculate a valid limit only 		$\bullet^6 l = 0$		
		(ii)	\bullet^7 state reason		• ⁷ outside interval -1		
Note	Notes		4 Just stating that $l = al + b$ or $l = \frac{b}{4}$ is not sufficient for \bullet^5 .				
			5 Any calculations based on formulae masquerading as a limit rule cannot gain \bullet^5 and \bullet^6 .				
			6 For candidates who use " $b=0$ ", \bullet^6 is only available to those who simplify $\frac{0}{2}$ to 0.				
				Accept $2 > 1$ or $p > 1$ for \bullet^7 . This may be expressed in words. Candidates who use <i>a</i> without reference to <i>p</i> or 2 cannot gain \bullet^7 .			

2 (a)	P (-3, -1) Q (1, 7)	6	
			Substituting for y
	● ¹ rearrange linear equation		• ¹ $y = 2x + 5$ stated or implied by • ²
	• ² substitute into circle		• ² $(2x+5)^2$ 2(2x+5)
	• ³ express in standard form		• ³ $5x^2 + 10x - 15 = 0$ = 0 must appear at the • ³ • ⁴ eg $5(x+3)(x-1)$ or • ⁴ stage to gain • ³
	$ullet^4$ start to solve		
	$ullet^5$ state roots		• $x = -3$ and $x = 1$
	• ⁶ determine corresponding <i>y</i> coordinates		• $y = -1$ and $y = 7$
			Substituting for x
			• ¹ $x = \frac{y-5}{2}$ stated or implied by • ²
			$\bullet^2 \left(\frac{y-5}{2}\right)^2 \dots - 6\left(\frac{y-5}{2}\right) \dots$
			• ³ $5y^2 - 30y - 35 = 0$ • ⁴ eg $5(y+1)(y-7)$ = 0 must appear at the • ³ or • ⁴ stage to gain • ³
			• $y = -1$ and $y = 7$
			• ⁶ $x = -3$ and $x = 1$
available. 2 Cross marking is availabl		ilable	ead to two real distinct roots for \bullet^5 and \bullet^6 to be here for \bullet^5 and \bullet^6 . to distinguish between points P and Q.
available. 2 Cross marking is available		ilable	• ⁶ $x = -3$ and $x = 1$ ead to two real distinct roots for • ⁵ and here for • ⁵ and • ⁶ .

2 (b)	, , , , , , , , , , , , , , , , , , , ,	6	
	$(x+5)^2 + (y-5)^2 = 40$	0	
	$ullet^7$ centre of original circle		• ⁷ (3, 1)
	$ullet^8$ radius of original circle		• ⁸ $\sqrt{40}$ accept $r^2 = 40$
	Method 1: Using midpoint		Method 1: Using midpoint
	• ⁹ midpoint of chord		• ⁹ (-1, 3)
	• ¹⁰ evidence for finding new centre		$ ightarrow^{10}$ eg stepping out or midpoint formula
	• ¹¹ centre of new circle		• ¹¹ (-5, 5)
	\bullet^{12} equation of new circle		• ¹² $(x+5)^2 + (y-5)^2 = 40$
	Method 2: Stepping out using P and Q		Method 2: Stepping out using P and Q
	• ⁹ evidence of C_1 to P or C_1 to Q		ullet eg stepping out or vector approach
	• ¹⁰ evidence of Q to C ₂ or P to C ₂		\bullet^{10} eg stepping out or vector approach
	• ¹¹ centre of new circle		• ¹¹ (-5, 5)
	• ¹² equation of new circle		• ¹² $(x+5)^2 + (y-5)^2 = 40$
Notes	4 The evidence for \bullet^7 a 5 Centre (-5, 5) withou in method 2 may still working in method 1 \bullet^{10} , \bullet^{11} or \bullet^{12} .	ut wor	may appear in (a). king in method 1 may still gain \bullet^{12} but not \bullet^{10} or \bullet^{11} , \bullet^{12} but not \bullet^9 , \bullet^{10} or \bullet^{11} . Any other centre without not gain \bullet^{10} , \bullet^{11} or \bullet^{12} , in method 2 does not gain \bullet^9 ,
	6 The centre must have	_	clearly indicated before it is used at the \bullet^{12} stage.
		may no	39.69 , or any other approximations for \bullet^{12} . It appear until the candidate states the radius or the candidate states the radius or the candidate states the radius of the candidate states the candidate states the candidate states the candidate states the
3	-7 < <i>p</i> < 5	4	
	 ¹ substitute into discriminant 		$\bullet^1 (p+1)^2 - 4 \times 1 \times 9$
	• ² know condition for no real roots		$\bullet^2 b^2 - 4ac < 0$
	• ³ factorise		• $(p-5)(p+7) < 0$
	• ⁴ solve for p		• 4 -7 < p < 5
3	equation of the second $-7•1 substitute intodiscriminant•2 know condition for noreal roots•3 factorise$	nd circ	• $(p+1)^2 - 4 \times 1 \times 9$ • $b^2 - 4ac < 0$

4		27	5	
•		$\left \frac{27}{4}\right $	5	
		• ¹ know to integrate and interpret limits		$\bullet^1 \int_{-3}^0 \cdots \cdots \cdots$
		• ² use "upper – lower"		• ² $\int_{-3}^{0} (x^3 + 3x^2 + 2x + 3) - (2x + 3) dx$
		● ³ integrate		$e^{3} \frac{1}{4}x^{4} + x^{3}$
		• ⁴ substitute limits		
		● ⁵ evaluate area		$e^5 \frac{27}{4}$ units ²
Note	2S		ifferer	ntiates one or more terms at \bullet^3 then \bullet^4 and \bullet^5 are not
		available.	tituto	without integrating at \bullet^2 do not gain \bullet^3 , \bullet^4 and \bullet^5 .
				ence that they have considered the upper limit
		0 at ● ⁴ .		
		4 Where candidates sh area, then \bullet^3 , \bullet^4 and	ow no I ● ⁵ are	evidence for both \bullet^3 and \bullet^4 , but arrive at the correct e not available.
		5 The omission of dx a	t ● ² sh	hould not be penalised.
5	(a)	$\overrightarrow{OB} = 4\mathbf{i} + 4\mathbf{j}$	1	
		• ¹ state \overrightarrow{OB} in unit vector form		• ¹ 4 \mathbf{i} + 4 \mathbf{j}
	(1)			
5	(b)	$\overrightarrow{DB} = \begin{pmatrix} 2\\ 2\\ -6 \end{pmatrix}$	3	
		(0)		
		$\overrightarrow{DM} = \begin{vmatrix} 0 \\ -2 \end{vmatrix}$		
		$\begin{pmatrix} 2 \\ -6 \end{pmatrix}$		
		• ² state components of $\overrightarrow{\text{DB}}$		(2)
				$ \begin{array}{c c} \bullet^2 & 2 \\ -6 \end{array} $
		$ullet^3$ state coordinates of M		\bullet^3 (2,0,0) stated, or implied by \bullet^4
		• ⁴ state components of		(0)
		DM .		$\left \bullet^{4} \right = 2$
1				

5	(c)	$40\cdot 3^\circ or\ 0\cdot 703 rads$	5	
		● ⁵ know to use scalar product		• $^{5} \cos BDM = \frac{\overrightarrow{DB}}{ \overrightarrow{DB} . \overrightarrow{DM} }$ stated or implied by • 9
		• ⁶ find scalar product		• ⁶ $\overrightarrow{\text{DB.DM}} = 32$
		 ⁷ find magnitude of a vector 		$ \mathbf{\bullet}^{7} \left \overrightarrow{DB} \right = \sqrt{44} $ $ \mathbf{\bullet}^{8} \left \overrightarrow{DM} \right = \sqrt{40} $
		 ⁸ find magnitude of a vector 		$\bullet^{8}\left \overline{DM}\right = \sqrt{40}$
		$ullet$ 9 evaluate angle BDM		• 9^{9} 40 · 3° or 0 · 703 rads
Note	2S	 If candidates do not relates to the labelli •⁹ should be awarded 	attem ng in t d to ar h mag	ny answer which rounds to 40° or 0.7 radians. Initudes are equal or there is only one non-zero
6		$\frac{27}{2}$	4	
		• ¹ use distributive law		• ¹ $\mathbf{p}.\mathbf{p}+\mathbf{p}.\mathbf{q}+\mathbf{p}.\mathbf{r}$
		• ² calculate scalar product		• ² $\mathbf{p} \cdot \mathbf{p} = 9$
		• ³ calculate scalar product		• ³ $\mathbf{p.q} = \frac{9}{2}$
		 ⁴ process scalar product =0 and complete 		• 4 p.r = 0 and $\frac{27}{2}$
7	(a)	$k \approx 0.028$	4	
		• ¹ interpret half-life		• ¹ $\frac{1}{2}P_0 = P_0e^{-25k}$ stated or implied by • ²
		• ² process equation		• $e^{-25k} = \frac{1}{2}$
		• ³ write in logarithmic form		$\bullet^3 \log_e \frac{1}{2} = -25k$
		• ⁴ process for k		$\bullet^4 k \approx 0.028$
Note	es	1 Do not penalise cand	idates	who substitute a numerical value for P_0 in part (a).

7	(b)	No, with reason	4	
		\bullet^5 interpret equation		• ⁵ $P_t = P_0 e^{-80 \times 0.028}$
		• ⁶ process		• ⁶ $P_t \approx 0.1065 P_0$
		 ⁷ state percentage decrease 		• ⁷ 89%
		● ⁸ justify answer		\bullet^8 No, the concentration will not have decreased by over 90%. 89% decrease.
Note	es	available unless alreation For a value of k ex-r \bullet^{6} is only available f	ady pe nihilo † or can	value of k which does not round to 0.028 , \bullet^5 is not enalised in part (a). then \bullet^5 , \bullet^6 and \bullet^7 are not available. didates who express P_t as a multiple of P_0 . g proportion. This is not a valid strategy.
8		$\frac{3\pi}{8}$	6	
		\bullet^1 start to integrate		$\bullet^1 -\frac{5}{4}\cos$
		\bullet^2 complete integration		$\bullet^2 -\frac{5}{4}\cos\left(4x-\frac{\pi}{2}\right)$
		• ³ process limits		$\bullet^{3} - \frac{5}{4}\cos\left(4a - \frac{\pi}{2}\right) + \frac{5}{4}\cos\left(\frac{4\pi}{8} - \frac{\pi}{2}\right)$
		• ⁴ simplify numeric term and equate to $\frac{10}{4}$		$\bullet^4 -\frac{5}{4}\cos\left(4a - \frac{\pi}{2}\right) + \frac{5}{4} = \frac{10}{4}$
		$ullet^5$ start to solve equation		$\bullet^5 \cos\left(4a - \frac{\pi}{2}\right) = -1$
		• ⁶ solve for a		$\bullet^6 \ a = \frac{3\pi}{8}$
Note	25	2 The inclusion of $+ c$ 3 \bullet^{6} is only available f 4 Where the candidate	at • ¹ or a va differ integ	lutions outwith the range cannot gain \bullet^6 . or \bullet^2 should be treated as bad form. alid numerical answer. rentiates, \bullet^1 , \bullet^2 and \bullet^3 are not available. rates incorrectly, \bullet^3 , \bullet^4 , \bullet^5 and \bullet^6 are still ven in radians.

9	(a)	4 cm	5		
		• ¹ prepare to differentiate		• ¹ 48 <i>x</i> ⁻¹	
		• ² differentiate		\bullet^2 3-48x ⁻²	
		\bullet^3 equate derivative to 0		• 3 3-48 x^{-2} = 0	
		• ⁴ process for x		$\bullet^4 x = 4$	
		● ⁵ verify nature		• ⁵ nature table or 2 nd derivative	
Note	?S	1 Do not penalise the r	non-ap	ppearance of -4 at \bullet^4 .	
9	(b)	No, (£198 > £195)	2		
		• ⁶ evaluate L		• ⁶ <i>L</i> = 24	
		 ⁷ calculate cost and justify answer 		• ⁷ $24 \times £8 \cdot 25 = £198$. No and reason (£198 > £195)	
Note	?S	2 Candidates who process $x = -4$ to obtain $L = -24$ do not gain \bullet^6 .			
		3 $y = 24$ is not awarde	d ● ⁶ .		
10	(a)	$a(t) = -16\sin\left(2t - \frac{\pi}{2}\right)$	3		
		• ¹ know to differentiate		• ¹ $a = v'(t)$	
		• ² differentiate trig function		$\bullet^2 -8\sin\left(2t-\frac{\pi}{2}\right)\dots$	
		• ³ applies chain rule		$\bullet^3 \dots \times 2$ and complete	
				$a(t) = -16\sin\left(2t - \frac{\pi}{2}\right)$	
Note	25	1 Alternatively, $8\cos\left(2t - \frac{\pi}{2}\right) = 8\sin 2t$			
• $v'(t)$ • $a^2 = 8 \cos t$		os 2 <i>t</i>	• ³ =×2		

10	(b)	a(10) > 0 therefore increasing	2		
		• ⁴ know to and evaluate $a(10)$		• $a(10) = 6.53$	
		$ullet^5$ interpret result		• ⁵ $a(10) > 0$ therefore increasing	
Notes		1 \bullet^5 is available only as a consequence of substituting into a derivative. • \bullet^4 and \bullet^5 are not available to candidates who work in degrees. • \bullet^2 and \bullet^3 may be awarded if they appear in the working for 10(b). However, \bullet^1 requires a clear link between acceleration and $v'(t)$.			
10	(c)	$s(t) = 4\sin\left(2t - \frac{\pi}{2}\right) + 8$	3		
		• ⁶ know to integrate		• ⁶ $s(t) = \int v(t)dt$	
		• ⁷ integrate correctly		$\bullet^7 s(t) = 4\sin\left(2t - \frac{\pi}{2}\right) + c$	
		• ⁸ determine constant and complete		• ⁸ $c = 8$ so $s(t) = 4\sin\left(2t - \frac{\pi}{2}\right) + 8$	
Notes		4 • ⁷ and •8 are not available to candidates who work in degrees. However, accept $\int 8\cos(2t-90)dt$ for • ⁶ .			

[END OF EXEMPLAR MARKING INSTRUCTIONS]