Detailed Marking Instructions for each question

Questi	on Expected response (Give one mark for each •)	Max mark	Additional guidance (Illustration of evidence for awarding a mark at each •)
1	y-12=6(x-5)	3	
	• ¹ know to differentiate		• $^{1} 2x - 4$
	• ² calculate gradient		• ² 6
	$ullet^3$ state equation of tangent		• $y - 12 = 6(x - 5)$
2	a = 1, b = -2 and $k = -1$	3	
	• ¹ interpret a and b		• $a = 1, b = -2 \text{ or } a = -2, b = 1$
	\bullet^2 know to substitute (1, 2)		• ² 2 = $k \times 1 \times (1+1) \times (1-2)$
	$ullet^3$ state the value of k		• ³ -1
3	$\frac{1}{12}$	3	
	• ¹ complete integration	-	$\bullet^1 - \frac{1}{6}x^{-1}$
	• ² substitute limits		• 6^{1} • $\left(-\frac{1}{6\times 2}\right) - \left(-\frac{1}{6\times 1}\right)$
	● ³ evaluate		• $^{3}\frac{1}{12}$
4	Statements B and D are true.	3	
	• ¹ statements B and D correct	_	● ¹ B and D
	\bullet^2 calculate maximum value		• ² max is $2-3 \times -1$ or
			$f\left(\frac{11\pi}{6}\right) = 2 - 3\sin\left(\frac{11\pi}{6} - \frac{\pi}{3}\right) = 2 - 3\sin\left(\frac{3\pi}{2}\right) = 5$
	• ³ calculate value of x		• ³ $x - \frac{\pi}{3} = \frac{3\pi}{2} \Longrightarrow x = \frac{3\pi}{2} + \frac{\pi}{3} \Longrightarrow x = \frac{11\pi}{6}$

5	(a)	a = -7 and $b = 10$	4			
		• ¹ know to use $x = 1$ and obtain an equation		• $(1)^3 - 4(1)^2 + a(1) + b = 0$		
		• ² know to use $x = 2$ and obtain an equation		• ² (2) ³ - 4(2) ² + $a(2) + b = -12$		
		• ³ process equations to find one value		• $a = -7$ and $b = 10$		
		$ullet^4$ find the other value		• $^{4} b = 10$ and $a = -7$		
Note	es	 An incorrect value at •³ should be followed through for the possible award of •⁴. However, if the equations are such that no solution exists, then •³ and •⁴ are not available. 				
		2 Synthetic Division is an accep	otable a	alternative method.		
5	(b)	x = 1, x = 5, x = -2	4			
		• ⁵ substitute for a and b and know to divide by $x-1$		• $(x^{3}-4x^{2}-7x+10) \div (x-1)$ stated or implied by • $(x^{6}-1)$		
		• ⁶ obtain quadratic factor		• ⁶ $(x-1)(x^2-3x-10)$		
		• ⁷ complete factorisation		• ⁷ $(x-1)(x-5)(x+2)$		
		• ⁸ state solution		• ⁸ $x = 1, x = 5, x = -2$		
		 For candidates who substitute a = -7 into the correct quotient from part (a), •⁵, •⁶ and •⁷ are available. Candidates who use incorrect values obtained in part (a) may gain •⁵, •⁶ and •⁷. Where the quadratic factor obtained is irreducible, candidates must clearly demonstrate that b² - 4ac < 0 to gain mark •⁷. Do not penalise the inclusion of "=0" or for solving for x. Candidates who use values, ex nihilo, for a and b can gain •⁵, if division is correct. 				

6	(a)	$y - 3 = \frac{1}{3}(x - 1)$	4			
		• ¹ find midpoint of PQ		• ¹ (1, 3)		
		• ² find gradient of PQ		• ² -3		
		• ³ interpret perpendicular gradient		$\bullet^3 \frac{1}{3}$		
		● ⁴ state equation of perpendicular bisector		• $y - 3 = \frac{1}{3}(x - 1)$		
Not	es	1 \bullet^4 is only available if a midpoint a	nd a	perpendicular gradient are used.		
		2 Candidates who use $y = mx + c$ mus available.	st obt	tain a numerical value for c before \bullet^4 is		
6	(b)	y - (-2) = -3(x - 1)	2			
		$ullet^5$ use parallel gradients		• ⁵ -3		
		• ⁶ state equation of line		• ⁶ $y - (-2) = -3(x - 1)$		
Not	es	$3 ext{ } \bullet^6$ is only available to candidates who use R and their gradient of PQ from (a).				
6	(c)	$x = -\frac{1}{2}, y = \frac{5}{2}$	3			
		• ⁷ use valid approach		• ⁷ $x - 3y = -8$ and $9x + 3y = 3$ or		
				$-3x+1=\frac{1}{3}x+\frac{8}{3}$ or $3(3y-8)+y=1$		
		 ⁸ solve for one variable 		$\bullet^8 \ x = -\frac{1}{2}$		
		 ⁹ solve for other variable 		• $y = \frac{5}{2}$		
Not	es	4 Neither $x-3y = -8$ and $3x + y = 1$ nor $y = -3x + 1$ and $3y = x + 8$ are sufficient to gain \bullet^7 .				
5						
	— equate zeros					
 give answers only, without working use R for equations in both (a) and (b) use the same gradient for the lines in (a) and (b) 			nd (b)			

			•			
6	(d)	$\sqrt{\frac{5}{2}}$	2			
		Ϋ 2				
		• ¹⁰ identify appropriate points		• ¹⁰ (1, 3) and $\left(-\frac{1}{2}, \frac{5}{2}\right)$		
		● ¹¹ calculate distance		• ¹¹ $\sqrt{\frac{5}{2}}$ accept $\frac{\sqrt{10}}{2}$ or $\sqrt{2 \cdot 5}$		
Not	:es	 6 •¹⁰ and •¹¹ are only available for considering the distance between the midpoint of PQ and the candidate's answer from (c) or for considering the perpendicular distance from P or Q to l₂. 7 At least one coordinate at •¹⁰ stage must be a fraction for •¹¹ to be available. 				
		8 There should only be one calculation				
-	(-)		1			
7	(a)	0, 60, 300	5			
		• ¹ know to use double angle formula		Method 1: Using factorisation		
				• ¹ $2\cos^2 x^\circ - 1$ stated or implied by • ²		
		• ² express as a quadratic in $\cos x^{\circ}$		• ² $2\cos^2 x^\circ - 3\cos x^\circ + 1 = 0$ = 0 must appear at either of these lines		
		• ³ start to solve		• ³ $(2\cos x^{\circ} - 1)(\cos x^{\circ} - 1)$ either of these lines to gain • ²		
				Method 2: Using quadratic formula		
				• ¹ $2\cos^2 x^\circ - 1$ stated or implied by • ²		
				• ² $2\cos^2 x^\circ - 3\cos x^\circ + 1 = 0$ stated explicitly		
				$\bullet^3 \frac{-(-3)\pm\sqrt{(-3)^2-4\times2\times1}}{2\times2}$		
		• ⁴ reduce to equations in $\cos x^{\circ}$ only		In both methods:		
				• $4 \cos x^{\circ} = \frac{1}{2}$ and $\cos x^{\circ} = 1$		
		$ullet^5$ process solutions in given domain		• ⁵ 0, 60, 300 Candidates who include 360 lose • ⁵ .		
				or • $\cos x = 1$ and $x = 0$		
				• $5 \cos x^{\circ} = \frac{1}{2}$ and $x = 60$ or 300		
				Candidates who include 360 lose \bullet^5 .		
Not	otes 1 \bullet^1 is not available for simply stating that $\cos 2A = 2\cos^2 A - 1$ with no furthe working.			at $\cos 2A = 2\cos^2 A - 1$ with no further		
		2 In the event of $\cos^2 x - \sin^2 x$ or $1 - 2\sin^2 x$ being substituted for $\cos 2x$, \bullet^1 cannot				
L						

		be awarded until the equation reduces to a quadratic in $\cos x$.					
		3 Substituting $\cos 2A = 2\cos^2 A - 1$ or $\cos 2a = 2\cos^2 a - 1$ etc should be treated as bad form throughout.					
	4 Candidates may express the quadratic equation obtained at the \bullet^2 form $2c^2 - 3c + 1$ or $2x^2 - 3x + 1$ etc. For candidates who do not solv trigonometric quadratic equation at \bullet^5 , $\cos x$ must appear explicitly \bullet^4 and \bullet^5 are only available as a consequence of solving a quadratic 6 Any attempt to solve $ax^2 + bx = c$ loses \bullet^3 , \bullet^4 and \bullet^5 .						
		7 • ⁵ is not available to candidates who their answers into degree measure.	o wo	ork in radian measure and do not convert			
7	(b)	0, 30, 150, 180, 210 and 330	2				
		\bullet^6 interpret relationship with (a)		• 6 2 <i>x</i> = 0 and 60 and 300			
		• ⁷ state valid values		• ⁷ 0, 30, 150, 180, 210 and 330			
Not	tes	8 Do not penalise the inclusion of 360	in (b).			
		9 Ignore extra answers, correct or incorpenalise incorrect answers within th					
		10 Do not penalise candidates who use radians in (b) if they have already been					
		penalised in (a).11 Candidates who go back to "first pri correct method leading to valid solu	back to "first principles" for (b) can only gain \bullet^6 and \bullet^7 for a ading to valid solutions.				
8	(a)		3				
		• ¹ reflection in <i>x</i> -axis		• ¹ reflection of graph in x -axis			
		• ² translation $\begin{bmatrix} 0\\2 \end{bmatrix}$		• ² graph moves parallel to <i>y</i> -axis by 2 units upwards			
		• ³ annotation of "transformed" graph		 ³ two "transformed" points appropriately annotated 			

Notes 1 2 3 4 5 6 7 8		 the origin need not be labelled. No marks are available unless a gr No marks are available to a candid the same diagram, unless it is cleated the s	No marks are available unless a graph is attempted. No marks are available to a candidate who makes several attempts at a graph on the same diagram, unless it is clear which is the final graph. A linear graph gains no marks in both (a) and (b). For \bullet^3 "transformed" means a reflection followed by a translation. \bullet^1 and \bullet^2 apply to the entire curve. A reflection in any line parallel to the <i>y</i> -axis does not gain \bullet^1 or \bullet^3 .			
8	(b)	 y 2 x •⁴ identify roots •⁵ interpret point of inflection 	3	 ⁴ 0 and 2 only ⁵ turning point at (2, 0) 		
		• ⁶ complete cubic curve		• ⁶ cubic passing through origin with negative gradient		
9	(a)	$k = 2$ and $a = \frac{\pi}{3}$	4			
		• ¹ use appropriate compound angle formula		• $k \cos A \cos B - k \sin A \sin B$ stated explicitly		
		• ² compare coefficients		• $k \cos a = 1$ and $k \sin a = \sqrt{3}$ stated explicitly		
		• ³ process k		• ³ 2 (do not accept $\sqrt{4}$)		
		• ⁴ process a		• ⁴ $\frac{\pi}{3}$ but must be consistent with • ²		
No	otes	1 Treat $k \cos A \cos B - \sin A \sin B$ as bad form only if the equations at the e^2 stage both contain k .				
		2 2 cosA cosB-2 sinA sinB or 2(cos	Acos	B-sinAsinB) is acceptable for \bullet^1 and \bullet^3 .		
		3 Accept $k \cos a = 1$ and $-k \sin a = -\sqrt{3}$ for \bullet^2 .				
4		• ² is not available for $k \cos 4x = 1$ and $k \sin 4x = \sqrt{3}$, however, • ⁴ is still available.				
		5 \bullet^4 is only available for a single value of <i>a</i> .				
		6 Candidates who work in degrees and do not convert to radian measure in (a) do not gain \bullet^4 .				

				we equation for \bullet^1 , \bullet^2 and \bullet^3 , however, \bullet^4 rpreted for the form $k\cos(4x+a)$.
9	(b)	$\left(\frac{\pi}{24},0\right)$ $\left(\frac{7\pi}{24},0\right)$	3	
		• ⁵ strategy for finding roots		• ⁵ $2\cos\left(4x+\frac{\pi}{3}\right)=0$ or $\sqrt{3}\sin 4x = \cos 4x$
		 ⁶ start to solve for multiple angles 		• $4x = \left(\frac{\pi}{2} - \frac{\pi}{3}\right), \left(\frac{3\pi}{2} - \frac{\pi}{3}\right)$
		• ⁷ state both roots in given domain		$\bullet^7 \frac{\pi}{24}, \frac{7\pi}{24}$
No	otes	8 Candidates should only be penalise (a) and (b).	ed onc	e for leaving their answer in degrees in
		9 If the expression used in (b) is not available.	consis	stent with (a) then only \bullet^6 and \bullet^7 are
		10 Correct roots without working can	not ga	in \bullet^6 but will gain \bullet^7 .
		11 Candidates should only be penalise	ed onc	e for not simplifying $\sqrt{4}$ in (a) and (b).
10		$y = \frac{3}{2}\sin 2x + \frac{\sqrt{3}}{4}$	4	
		• ¹ know to integrate		• $\frac{3}{2}\sin 2x +$
		• ² substitute $\left(\frac{7\pi}{6},\sqrt{3}\right)$		$\bullet^2 \sqrt{3} = \frac{3}{2} \sin\left(2 \times \frac{7\pi}{6}\right) + c$
		• ³ use exact values		• ³ $\sqrt{3} = \frac{3}{2} \times \left(\frac{\sqrt{3}}{2}\right) + c$
		• ⁴ express y in terms of x		• $y = \frac{3}{2}\sin 2x + \frac{\sqrt{3}}{4}$
11	(a)	$3(x^3-1)+1$	2	
		• ¹ interpret notation		• $g(x^3-1)$
		• ² complete process		• $g(x^3-1)$ • $3(x^3-1)+1$

11 (b)

$$h(x) = \sqrt[3]{\frac{x+2}{3}}$$

$$\bullet^{3} \text{ start to rearrange for } x =$$

$$\bullet^{4} \text{ rearrange}$$

$$\bullet^{4} \text{ rearrange}$$

$$\bullet^{5} \text{ write in functional form:}$$

$$h(x) = \text{ or } y =$$

$$b^{5} h(x) = \sqrt[3]{\frac{x+2}{3}}$$

[END OF EXEMPLAR MARKING INSTRUCTIONS]