

2022 Mathematics

Higher

Paper 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2022

These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments.

The information in this document may be reproduced in support of SQA qualifications only on a noncommercial basis. If it is reproduced, SQA must be clearly acknowledged as the source. If it is to be reproduced for any other purpose, written permission must be obtained from <u>permissions@sqa.org.uk</u>.

General marking principles for Higher Mathematics

Always apply these general principles. Use them in conjunction with the detailed marking instructions, which identify the key features required in candidates' responses.

For each question, the marking instructions are generally in two sections:

- generic scheme this indicates why each mark is awarded
- illustrative scheme this covers methods which are commonly seen throughout the marking

In general, you should use the illustrative scheme. Only use the generic scheme where a candidate has used a method not covered in the illustrative scheme.

- (a) Always use positive marking. This means candidates accumulate marks for the demonstration of relevant skills, knowledge and understanding; marks are not deducted for errors or omissions.
- (b) If you are uncertain how to assess a specific candidate response because it is not covered by the general marking principles or the detailed marking instructions, you must seek guidance from your team leader.
- (c) One mark is available for each •. There are no half marks.
- (d) If a candidate's response contains an error, all working subsequent to this error must still be marked. Only award marks if the level of difficulty in their working is similar to the level of difficulty in the illustrative scheme.
- (e) Only award full marks where the solution contains appropriate working. A correct answer with no working receives no mark, unless specifically mentioned in the marking instructions.
- (f) Candidates may use any mathematically correct method to answer questions, except in cases where a particular method is specified or excluded.
- (g) If an error is trivial, casual or insignificant, for example $6 \times 6 = 12$, candidates lose the opportunity to gain a mark, except for instances such as the second example in point (h) below.
- (h) If a candidate makes a transcription error (question paper to script or within script), they lose the opportunity to gain the next process mark, for example

The following example is an exception to the above

(i) Horizontal/vertical marking

If a question results in two pairs of solutions, apply the following technique, but only if indicated in the detailed marking instructions for the question.

Example:

Horizontal: ${}^{5}x = 2$ and x = -4 ${}^{6}y = 5$ y = -7 ${}^{6}y = 5$ and y = -7 ${}^{6}x = -4$ and y = 5 ${}^{6}x = -4$ and y = -7

You must choose whichever method benefits the candidate, **not** a combination of both.

(j) In final answers, candidates should simplify numerical values as far as possible unless specifically mentioned in the detailed marking instruction. For example

 $\frac{15}{12}$ must be simplified to $\frac{5}{4}$ or $1\frac{1}{4}$ $\frac{43}{1}$ must be simplified to 43 $\frac{15}{0\cdot 3}$ must be simplified to 50 $\frac{\frac{4}{5}}{3}$ must be simplified to $\frac{4}{15}$ $\sqrt{64}$ must be simplified to 8*

*The square root of perfect squares up to and including 100 must be known.

- (k) Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide when marking similar non-routine candidate responses.
- (I) Do not penalise candidates for any of the following, unless specifically mentioned in the detailed marking instructions:
 - working subsequent to a correct answer
 - correct working in the wrong part of a question
 - legitimate variations in numerical answers/algebraic expressions, for example angles in degrees rounded to nearest degree
 - omission of units
 - bad form (bad form only becomes bad form if subsequent working is correct), for example

$$(x^{3} + 2x^{2} + 3x + 2)(2x + 1)$$
 written as

$$(x^{3} + 2x^{2} + 3x + 2) \times 2x + 1$$

$$= 2x^{4} + 5x^{3} + 8x^{2} + 7x + 2$$

gains full credit

gains full credit

- repeated error within a question, but not between questions or papers
- (m) In any 'Show that...' question, where candidates have to arrive at a required result, the last mark is not awarded as a follow-through from a previous error, unless specified in the detailed marking instructions.
- (n) You must check all working carefully, even where a fundamental misunderstanding is apparent early in a candidate's response. You may still be able to award marks later in the question so you must refer continually to the marking instructions. The appearance of the correct answer does not necessarily indicate that you can award all the available marks to a candidate.

- (o) You should mark legible scored-out working that has not been replaced. However, if the scored-out working has been replaced, you must only mark the replacement working.
- (p) If candidates make multiple attempts using the same strategy and do not identify their final answer, mark all attempts and award the lowest mark. If candidates try different valid strategies, apply the above rule to attempts within each strategy and then award the highest mark.

For example:

Strategy 1 attempt 1 is worth 3 marks.	Strategy 2 attempt 1 is worth 1 mark.
Strategy 1 attempt 2 is worth 4 marks.	Strategy 2 attempt 2 is worth 5 marks.
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

In this case, award 3 marks.

Marking Instructions for each question

Question		on	Generic scheme	Illustrative scheme	Max mark	
1.	(a)		• ¹ determine gradient of AB	● ¹ −1	3	
			• ² determine gradient of altitude	• ² 1		
			\bullet^3 find equation	• ³ $y = x - 4$		
Note	Notes:					
1. • 2. A s	 •³ is only available to candidates who find and use a perpendicular gradient. At •³, accept any arrangement of a candidate's equation where constant terms have been simplified. 					

Commonly Observed Responses:	
Candidate A - BEWARE	
Correct gradient from incorrect substitution $m_{AB} = \frac{2 - (-1)}{-4 - (-1)} = -1$ • ¹ *	
$m_{\perp} = 1 \qquad \qquad \bullet^2 \checkmark 1$ $y = x - 4 \qquad \qquad \bullet^3 \checkmark 1$	

Question	Generic scheme		Illustrative scheme		Max mark
1. (b)	• ⁴ determine midpoint of AC		• ⁴ (3,1)		3
	• ⁵ determine gradient of median		• ⁵ 5		
	• ⁶ find equation		• $y = 5x - 14$		
Notes:					
 •⁵ is only available to candidates who use a midpoint to find a gradient. •⁶ is only available as a consequence of using a 'midpoint' of AC and the point B. 5. At •⁶, accept any arrangement of a candidate's equation where constant terms have been simplified. •⁶ is not available as a consequence of using a perpendicular gradient. 					
Commonly Observed Responses:					
Candidate A - Pe	erpendicular bisector of AC	Can	didate B - Altitude through B		
$Midpoint_{AC}(3,1)$	● ¹ ✓	m _{AC}	$=\frac{1}{2}$	●1 ∧	
$m_{\rm AC} = \frac{1}{2} \Longrightarrow m_{\perp} =$	=−2 • ² ×	m_{\perp}	2 = -2	• ² 🗴	
y + 2x = 7	• ³ <mark>✓ 2</mark>	y +	2x = 0	• ³ 🖌 2	
For other perpe	ndicular bisectors award 0/3				
Candidate C - M	edian through A	Can	didate D - Median through C		
$\operatorname{Midpoint}_{BC}\left(\frac{9}{2},-\right.$	$\left(\frac{1}{2}\right)$ $\bullet^1 \mathbf{x}$	Mid	$point_{AB}\left(\frac{1}{2},-\frac{5}{2}\right)$	• ¹ x	
$m_{AM} = \frac{1}{11}$	• ² <u>1</u>	m _{cN}	$h = \frac{11}{13}$	• ² 🖌 1	
11y = x - 10	• ³ ⁄ 2	13 y	x = 11x - 38	• ³ 🖌 2	
(c)	• ⁷ determine <i>x</i> -coordinate		• ⁷ 2.5		2
	• ⁸ determine <i>y</i> -coordinate		• ⁸ -1.5		
Notes:					
7. For $\left(\frac{10}{4}, -\frac{6}{4}\right)$ award 1/2 (do not penalise repeated lack of simplification - general marking					
principle (l)	principle (l)).				
Commonly Obse	erved Responses:				

Question		on	Generic	scheme		Illustrative scheme	Max mark
2.			• ¹ use discriminan	t		• ¹ $(-8)^2 - 4(2)(4-p)$	3
			• ² apply condition	and simplify		• ² $32 + 8p > 0$ or $8p > -32$	
			• ³ state range			• $p > -4$	
Note	s:						
1. A fo w 2. If C 3. If	 At •¹, treat the inconsistent use of brackets eg (-8)² - 4×2×4-p or -8² - 4(2)(4-p) as bad form only if the candidate deals with the unbracketed terms correctly in the next line of working. If candidates have the condition 'discriminant = 0', then •² and •³ are unavailable. However, see Candidate E. If candidates have the condition 'discriminant < 0', 'discriminant ≤ 0' or 'discriminant ≥ 0' then •² is lost but •³ is available. 						
Com	nonly	' Obse	erved Responses:				
Cand	idate	A - b	ad form		Can	didate B - no coefficient of <i>p</i>	
$(-8)^{2}$	² – 4 ×	2×4-	- <i>p</i> > 0		(–8	$)^2 - 4 \times 2 \times 4 - p > 0$	
32+	8 <i>p</i> > 0	0	•••	● ¹ ✓ ● ² ✓	32-	-p > 0 • ¹ × •	2 🖌 2
<i>p</i> > -	-4			• ³ ✓	<i>p</i> <	32 ● ³ ✓ 2	2
Cand -8 ² - 32 + p > -	idate - 4 × 2 8 <i>p</i> > 0 -4	C - b ×(4− 0	ad form $p > 0$	• ¹ ✓ • ² ✓ • ³ ✓	Can -8^2 -96 p >	didate D - not bad form $-4 \times 2 \times (4-p) > 0$ +8p > 0 12 $\bullet^{1} \times \bullet$ $\bullet^{3} \checkmark$	² <mark>✓ 2</mark> I
Cand Real (-8) 32 +	idate and d $^{2}-4($ 8p=0 -4	E - co istinc 2)(4- 0	pondition stated init t roots $b^2 - 4ac > 0$ (-p) = 0	ially ● ¹ ✓	Can 8 ² - 32 - p >	didate F $-4(2)(4-p) > 0$ $-8p > 0$ -4	
so p	>4			• ² 🗸 • ³ 🗸	How wor	vever, $64-4(2)(4-p) > 0$ as the first king may be awarded \bullet^1	: line of

Question		on	Generic scheme		Illustrative scheme	Max mark
3.	(a)		• ¹ use compound angle formula	• ¹	$k \sin x \cos a + k \cos x \sin a$ stated explicitly	4
			• ² compare coefficients	•2	$k \cos a = 4$ and $k \sin a = 5$ stated explicitly	
			• ³ process for k	•3	$k = \sqrt{41}$	
			• ⁴ process for <i>a</i> and express in required form	•4	$\sqrt{41}\sin(x+0.896)$	

Notes:

- 1. Accept $k(\sin x \cos a + \cos x \sin a)$ at •¹.
- 2. Treat $k \sin x \cos a + \cos x \sin a$ as bad form only if the equations at the \bullet^2 stage both contain k.
- 3. $\sqrt{41}\sin x \cos a + \sqrt{41}\cos x \sin a$ or $\sqrt{41}(\sin x \cos a + \cos x \sin a)$ are acceptable for \bullet^1 and \bullet^3 .
- 4. •² is not available for $k \cos x = 4$ and $k \sin x = 5$, however •⁴ may still be gained. See Candidate E.
- 5. •³ is only available for a single value of k, k > 0.
- 6. •⁴ is not available for a value of a given in degrees.
- 7. Accept values of *a* which round to 0.9.
- 8. Candidates may use any form of the wave function for \bullet^1 , \bullet^2 and \bullet^3 . However, \bullet^4 is only available if the wave is interpreted in the form $k \sin(x+a)$.
- 9. Evidence for \bullet^4 may not appear until part (b) and must appear by the \bullet^5 stage.

Commonly Observed Responses:						
Candidate A	Candidate B $k \sin x \cos a + k \cos x \sin a \bullet^1 \checkmark$	Candidate C $\sin x \cos a + \cos x \sin a \bullet^1 *$				
$\sqrt{41}\cos a = 4$ $\sqrt{41}\sin a = 5 \qquad \bullet^2 \checkmark \bullet^3 \checkmark$	$\cos a = 4$ $\sin a = 5 \qquad \bullet^2 *$	$\cos a = 4$ $\sin a = 5$ • ² ✓ 2				
$\tan a = \frac{5}{4}$ $a = 0.896\dots$	$\tan a = \frac{5}{4}$ a = 0.896 Not consistent with equations at \bullet^2 .	$k = \sqrt{41} \qquad \bullet^3 \checkmark$ $\tan a = \frac{5}{4}$ $a = 0.896$				
$\sqrt{41}\sin(x+0.896) \bullet^4 \checkmark$	$\sqrt{41}\sin(x+0.896)^{4}$	$\sqrt{41}\sin(x+0.896)$ • ⁴ ×				

Question Gener		ric scheme	Illu	ustrative scheme	Max mark
3. (a) (co	ntinued)				
Commonly Obs	erved Responses:	-		-	
Candidate D - $k \sin x \cos a + k$	errors at \bullet^2 $\cos x \sin a \bullet^1 \checkmark$	Candidate E - us $k \sin x \cos a + k \cos a$	se of x at \bullet^2 os x sin a $\bullet^1 \checkmark$	Candidate F k sin A cos B + k cos A sir	IB ● ¹ ¥
$k \cos a = 5$ $k \sin a = 4$	• ² x	$k \cos x = 4$ $k \sin x = 5$	• ² ¥	$k \cos A = 4$ $k \sin A = 5$	• ² x
$\tan a = \frac{4}{5}$ $a = 0.674$		$\tan x = \frac{5}{4}$ $x = 0.896\dots$		$\tan A = \frac{5}{4}$ $A = 0.896$	
$\sqrt{41}\sin(x+0.6)$	574…) •³ ✓ • ⁴ ✓ 1	$\sqrt{41}\sin(x+0.896)$	5…) ● ³ ✓ ● ⁴ ✓ 1	$\sqrt{41}\sin(x+0.896)$ •	³ √ ● ⁴ √ 1
(b)	• ⁵ link to (a) • ⁶ solve for $(x + $	- a)	• $\sqrt[6]{41}\sin($ • (1.033)	x + 0.896) = 5.5 e^7 , 2.108	3
	• ⁷ solve for x		•7 0.137	, 1.212	
Notes:					
 10. In part (b), 11. •⁷ is only av range. 12. At •⁷ accept 	where candidates vailable for two sol values of <i>x</i> which	work in degrees t utions within the round to 0.1 or 1	hroughout, the n stated range. Igr .2	naximum mark available nore 'solutions' outwith t	is 2/3. .he
Commonly Obs	erved Responses:				
Candidate G -	converting to radi	ans $1 \left(\frac{1}{2} \right) \left(\frac{1}{2} \right)$	Candidate H - w	vorking in degrees and	
$ \begin{array}{c} \vdots & & & & & & & & \\ \sqrt{41}\sin(x+51.3) & & & & & & \\ \sqrt{41}\sin(x+51.3) = 5.5 & & & & & & \\ x+51.3 = 59.1, 120.8 & & & \\ x = 7.8, 69.4 & & & & & & \\ x = \frac{7.9\pi}{180}, \frac{69.5\pi}{180} & & & & & & & \\ \end{array} $			$\frac{1}{\sqrt{41}\sin(x+51.)} = \sqrt{41}\sin(x+51.3)$ $\sqrt{41}\sin(x+51.3)$ x+51.3 = 59.1, 1 x = 7.8	$ \begin{array}{c} $	• ² ✓ • ³ ✓ 1 1 • ⁷ ∧
Candidate I - w :	orking in degrees	• ¹ ✓ • ² ✓ • ³ ✓	Candidate J - w	orking in degrees •1 🗸	• ² • • ³ •
$\sqrt{41}\sin(x+51)$.	3)	• ⁴ x	$\sqrt{41}\sin(x+51.3)$) • ⁴ ×	
$\sqrt{41}\sin(x+51)$	3) = 5.5	● ⁵ <mark>✓ 1</mark>	$\sqrt{41}\sin(x+51.3)$	B) = 5.5 ● ⁵	1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$.1 3	• ⁶ • • ⁷ •	x + 51.3 = 59.	1, 120.8 •6 ^	•7 •

Question		n	Generic scheme	Illustrative scheme	Max mark
4.	(a)		• ¹ state appropriate integral	• $\int_{-1}^{2} (x^3 - 5x^2 + 2x + 8) dx$	4
			• ² integrate	• ² $\frac{1}{4}x^4 - \frac{5}{3}x^3 + \frac{2x^2}{2} + 8x$	
			• ³ substitute limits	$ \begin{vmatrix} \bullet^{3} \left(\frac{1}{4} (2)^{4} - \frac{5}{3} (2)^{3} + (2)^{2} + 8(2) \right) \\ - \left(\frac{1}{4} (-1)^{4} - \frac{5}{3} (-1)^{3} + (-1)^{2} + 8(-1) \right) \end{vmatrix} $	
			• ⁴ evaluate area	• ⁴ $\frac{63}{4}$ or 15.75	

Notes:

- 1. Limits and 'dx' must appear at the \bullet^1 stage for \bullet^1 to be awarded. 2. Where a candidate differentiates one or more terms at \bullet^2 , then \bullet^3 and \bullet^4 are not available.
- 3. Candidates who substitute limits without integrating, do not gain \bullet^3 or \bullet^4 .
- 4. Do not penalise the inclusion of +c.
- 5. Do not penalise the continued appearance of the integral sign after \bullet^1 .

6. •⁴ is not available where solutions include statements such as $-\frac{63}{4} = \frac{63}{4}$. See Candidate C.

Commonly Observed Responses:			
Candidate A		Candidate B - evidence of substitution using a calculator	
$\int_{-1}^{2} \left(x^{3} - 5x^{2} + 2x + 8 \right)$	• ¹ x	$\int \left(x^3 - 5x^2 + 2x + 8\right) dx$	•1 🗴
$=\frac{1}{4}x^4 - \frac{5}{3}x^3 + \frac{2x^2}{2} + 8x$	• ² ✓	$=\frac{1}{4}x^4 - \frac{5}{3}x^3 + \frac{2x^2}{2} + 8x$	•² ✓
	• ³ ^	$=\frac{32}{3}-\left(-\frac{61}{12}\right)$	• ³ ✓
$=\frac{63}{4}$	● ⁴ <mark>✓ 1</mark>	$=\frac{63}{4}$	•4 🗸
Candidate C - communication for	•4		
$\int_{-1}^{-1} \left(x^3 - 5x^2 + 2x + 8 \right) dx \qquad \bullet^1 \checkmark$			
<i>L</i>	• ² ✓ • ³ ✓		
$=-\frac{63}{4}$, hence area is $\frac{63}{4}$.	•4 🗸		
However $-\frac{63}{4} = \frac{63}{4}$ square units d	oes not gain \bullet^4		

C)uestic	on	Generic scheme	Illustrative scheme	Max mark
4.	(b)		Method 1	Method 1	3
			• ⁵ state appropriate integral	• $\int_{2}^{4} \left(x^{3}-5x^{2}+2x+8\right) dx$	
			• ⁶ evaluate integral	• ⁶ $-\frac{16}{3}$	
			• ⁷ interpret result and evaluate total area	• ⁷ $\frac{253}{12}$ or 21.083	
			Method 2	Method 2	
			• ⁵ state appropriate integral	• $\int_{2}^{4} \left(0 - \left(x^{3} - 5x^{2} + 2x + 8 \right) \right) dx$	
			• ⁶ substitute limits	$\bullet^{6} - \left(\frac{1}{4}(4)^{4} - \frac{5}{3}(4)^{3} + (4)^{2} + 8(4)\right) -$	
				$\left(-\left(\frac{1}{4}(2)^{4}-\frac{5}{3}(2)^{3}+(2)^{2}+8(2)\right)\right)$	
			• ⁷ evaluate total area	• ⁷ $\frac{253}{12}$ or 21.083	
Note	es:				
7. 1	For car	ndidat	tes who only consider $\int_{-1}^{4} \dots dx$ or any oth	er invalid integral, award 0/3.	
8. I	n part	(b), a	at \bullet^5 do not penalise the omission of 'dx	<i>.</i> '.	
9. I	n Metł	nod 1,	• ⁵ may be awarded for $\left[\frac{1}{4}x^4 - \frac{5}{3}x^3 + \frac{2}{3}x^4\right]$	$\left[\frac{x^2}{2} + 8x\right]_2^4$	
(or $\left(\frac{1}{4}\right)$	(4) ⁴ –	$\frac{5}{3}(4)^{3} + (4)^{2} + 8(4) - \left(\frac{1}{4}(2)^{4} - \frac{5}{3}(2)^{3} + $	$-(2)^2+8(2)\Big).$	
10. I	10. In Method 2, \bullet^5 may be awarded for $\left[\frac{1}{4}x^4 - \frac{5}{3}x^3 + \frac{2x^2}{2} + 8x\right]_4^2$ or \bullet^5 and \bullet^6 may be awarded for				
	$\left(\frac{1}{4}(2)\right)$	$4 - \frac{5}{3}($	$(2)^{3} + (2)^{2} + 8(2) - \left(\frac{1}{4}(4)^{4} - \frac{5}{3}(4)^{3} + (4)^{4}\right) - \left(\frac{1}{4}(4)^{4} - \frac{5}{3}(4)^{4}\right) - \left(\frac{1}{4}$	$)^{2}+8(4)$.	
11.	⁷ is no	t avai	ilable to candidates where solutions inc	clude statements such as $-\frac{16}{3} = \frac{16}{3}$ squ	Jare
12.	units. S n Meth	See Ca nod 1,	andidate D. where a candidate's integral leads to didate has differentiated in both parts	a positive value, • ⁷ is not available.	

13. Where a candidate has differentiated in both parts of the question see Candidate E.

Question		on	Generic scheme	Illustrative scheme	Max mark	
4.	(b)	(con	tinued)			
Com	monly	0bse	rved Responses:			
Canc	lidate	D - co	ommunication for \bullet^7			
$\int_{2}^{4} (x^{3})^{4}$	$\int_{2}^{6} \left(x^{3} - 5x^{2} + 2x + 8 \right) dx = -\frac{16}{3} \qquad \bullet^{5} \checkmark \bullet^{6} \checkmark$					
$\frac{63}{4} + \frac{16}{3} = \frac{253}{12} \qquad \qquad \bullet^7 \checkmark$						
How	ever,	• ⁷ is n	ot available where statements such	as " $-\frac{16}{3} = \frac{16}{3}$ square units" or "ignore		
nega	tive"	appea	r.			
Cano	lidate	E - di	fferentiation in (a) and (b)			
(a) _	$(x^3 - 1)$	$5x^2 + 2$	(2x+8)dx • ¹	✓		
=	$= 3x^2 -$	-10 <i>x</i> -	-2 •2	×		
=	=(3(2)) ² –10	$(2)+2)-(3(-1)^2-10(-1)+2)$ • ³	×		
= A	= -21 rea =	21	•	×		
(b) ($3(4)^{2}$	-10(-	$(4)+2)-(3(2)^2-10(2)+2)=16$	✓ ● ⁶ ✓ 1		
T	otal A	rea =	5 • ⁷	✓ 2 see note 12		

Question		on	Generic scheme	Illustrative scheme	Max mark		
5.	(a)	(i)	• ¹ interpret notation	• $f(3x+5)$ or $(g(x))^2 - 2$	2		
			• ² state expression for $f(g(x))$	• ² $(3x+5)^2-2$			
		(ii)	• ³ state expression for $g(f(x))$	• $3(x^2-2)+5$	1		
Note	s:	•	•	·			
1. F	or $f($	(g(x))	$=(3x+5)^2-2$ without working, awar	d both \bullet^1 and \bullet^2 .			
Com	Commonly Observed Responses:						
Cano	lidate	Α					
(a)(i)	(a)(i) $f(g(x)) = 3(x^2 - 2) + 5$ • ¹ * • ² \checkmark 1						
(a)(ii	i) g(j	f(x)	$= (3x+5)^2 - 2 \qquad \bullet^3 \checkmark 1$				

Q	uestic	on	Gener	ic scheme	Illustrative scheme	Max mark
5.	(b)		• ⁴ interpret information and expand		• $9x^2 + 30x + 25 - 2 < 3x^2 - 6 + 5$	4
			• ⁵ express inequa quadratic form	ality in standard n	• $6x^2 + 30x + 24 < 0$	
			• ⁶ determine zer equation	ros of quadratic	• -4, -1	
			• ⁷ state range w	ith justification	• ⁷ $-4 < x < -1$ with eg sketch or table of signs	
Note	s:					
2. C s 3. A 4. A j	andid till ava ccept t • ⁷ ac ustific	ates v ailable the a ccept ation	who do not work we. See Candidate I ppearance of -4 , " $x > -4$ and $x < -4$	with an inequation f D. -1 within inequalit -1 or " $x > -4$, 2	from the outset lose \bullet^* , \bullet^3 and \bullet' . How lies for \bullet^6 . c < -1 " together with the required	'ever, ●° is
Com	monly	0bse	erved Responses:			
Canc	lidate	В		с	andidate C	
$9x^2$ -	+ 30x -	+ 25 –	$2 < 3x^2 - 6 + 5$	•4 🖌 9	$x^2 + 30x + 25 - 2 < 3x^2 - 6 + 5 \qquad \bullet^4$	√
$6x^2$ -	+ 30 <i>x</i> -	+ 24 <	0	•5 ✓ 6	$x^2 + 30x + 24 = 0$ • ⁵	×
$6x^2$ -	+ 30x -	+ 24 =	0	x	=-1, x = -4 • ⁶	✓
x = -	-1, <i>x</i> =	=4		•6 🗸 🚽 –	$4 < x < -1$ with sketch \bullet^7	×
-4 <	: x < -	1 wit	h sketch	•7 🗸		
Cano	lidate	D				
9 x ² -	+ 30 <i>x</i> -	+ 25 –	$2 = 3x^2 - 6 + 5$	•4 🗴		
$6x^2$ -	+ 30 <i>x</i> -	+ 24 =	0	• ⁵ x		
x = -	-1, <i>x</i> =	=4		● ⁶ ✓		
For	f(g(x))	r))< g	g(f(x))			
-4 <	(<i>x</i> < –	1 wit	h sketch	•7 🗴		

Question	ı	Generic scheme		Illustrative scheme	Max mark
6.		\bullet^1 write in integrable form		• $1 - 3x^{-2}$	5
		\bullet^2 integrate one term		• ² x or $-\frac{3x^{-1}}{-1}$	
		\bullet^3 complete integration		• ³ $-\frac{3x^{-1}}{-1} + c$ or $x \dots + c$	
		• ⁴ interpret information given and substitute for <i>x</i> and <i>y</i>	b	• ⁴ 6 = 3 + 3(3) ⁻¹ + c	
		\bullet^5 state expression for y		• ⁵ $y = x + 3x^{-1} + 2$	
Notes:	ľ				
 For cand For cand For cand For cand 	lidate lidate lidate Obse	es who make no attempt to integrates who omit $+ c$ only \bullet^1 and \bullet^2 are es who differentiate either term, \bullet rved Responses:	ate c avai •³, •⁴	only •1 is available. Ilable. 4, and •5 are not available.	
Candidate A	\ - in	complete substitution	Candidate B - partial integration		
$y = x + 3x^{-1}$	+c	$\bullet^1 \checkmark \bullet^2 \checkmark \bullet^3 \checkmark$	<i>y</i> =	$= 1 + 3x^{-1} + c \qquad \qquad \bullet^1 \checkmark \bullet^2 \checkmark \bullet^3$	×
$y = 3 + 3(3)^{-1}$	$^{-1} + c$		6 =	$1+3(3)^{-1}+c$ • ⁴ \checkmark 1	
c = -4 $y = x + 3x^{-1}$	-4	• ⁴ ^	c = y =	x = 4 = $x + 3x^{-1} + 4$ • ⁵ \checkmark 1	
Candidate C	C - in	consistent working	Car	ididate D - inconsistent working	
$\frac{dy}{dt} = 1 - \frac{3}{2}$			$\frac{dy}{dt}$	$=1-\frac{3}{2}$	
$\begin{vmatrix} dx & x^{-} \\ x - 3x^{-2} \end{vmatrix}$	2	• ¹ ×	ax	x^{-} $x - 3x^{-2}$ $\bullet^{1} \times$	
$y = x - \frac{3x^{-1}}{-1}$	$y = x - \frac{3x^{-1}}{-1} + c$ $\bullet^2 \checkmark 1$ $\bullet^3 \checkmark 1$			$\frac{x^2}{2} - \frac{3x^{-1}}{-1} + c$ $\bullet^2 \checkmark 1 \bullet^3 \checkmark 1$	
Candidate E integration not complete at • ³ stage					
$\frac{dy}{dx} = 1 - 3x^{-2}$	2	•1 🗸			
$y = x - \frac{3x^{-1}}{-1}$		• ² ✓ • ³ ≭			
$y = x + 3x^{-1}$	+c				

Question		Generic scheme	Illustrative scheme	Max mark
7.		Method 1	Method 1	5
		• ¹ state equation of line	• $\log_5 y = -2\log_5 x + 3$	
		• ² introduce logs	• ² $\log_5 y = -2\log_5 x + 3\log_5 5$	
		• ³ use laws of logs	• ³ $\log_5 y = \log_5 x^{-2} + \log_5 5^3$	
		• ⁴ use laws of logs	• $\log_5 y = \log_5 5^3 x^{-2}$	
		• ⁵ state k and n	• ⁵ $k = 125, n = -2$	
		Method 2	Method 2	
		• ¹ state equation of line	• ¹ $\log_5 y = -2\log_5 x + 3$	
		\bullet^2 use laws of logs	• ² $\log_5 y = \log_5 x^{-2} + 3$	
		• ³ use laws of logs	• ³ $\log_5 \frac{y}{x^{-2}} = 3$	
		• ⁴ use laws of logs	$\bullet^4 \frac{y}{x^{-2}} = 5^3$	
		• ⁵ state k and n	• ⁵ $k = 125, n = -2$	
		Method 3	Method 3 The equations at •1, •2, and •3 must be stated explicitly.	
		• ¹ introduce logs to $y = kx^n$	• $\log_5 y = \log_5 kx^n$	
		• ² use laws of logs	• ² $\log_5 y = n \log_5 x + \log_5 k$	
		• ³ interpret intercept	• ³ $\log_5 k = 3$	
		• ⁴ use laws of logs	• $k = 125$	
		• ⁵ interpret gradient	• $n = -2$	

Q	uestion	Generic scheme	Illustrative scheme	Max mark			
7.	(continue	tinued)					
		Method 4	Method 4				
		• ¹ interpret point on log graph	• $\log_5 x = 0$ and $\log_5 y = 3$				
		• ² convert from log to exponential form	• ² $x = 1, y = 5^3$				
		• ³ interpret point and convert	• ³ $\log_5 x = 2$ and $\log_5 y = -1$ $x = 5^2$ and $y = 5^{-1}$				
		• ⁴ substitute into $y = kx^n$ and evaluate k	• ⁴ $5^3 = k(1)^n \Longrightarrow k = 125$				
		• ⁵ substitute other point into $y = kx^n$ and evaluate n	• ⁵ $5^{-1} = 5^3 \times 5^{2n}$ $\Rightarrow 3 + 2n = -1$ $\Rightarrow n = -2$				
Note	s:	•	·				
1. II 2. M 3. P 4. II 5. D 6. II 7. A	 In any method, marks may only be awarded within a valid strategy using y = kxⁿ. Markers must identify the method which best matches the candidates approach; markers must not mix and match between methods. Penalise the omission of base 5 at most once in any method. In Method 4, candidates may use (2,-1) for •¹ and •² and (0,3) for •³. Do not accept k = 5³. In Method 3, do not accept m = -2 or gradient = -2 for •⁵. Accept v = 125x⁻² for •⁵. 						
Com	monly Obse	arved Responses.					
Com							

Question		on	Generic scheme	Illustrative scheme	Max mark
8.	(a)		• ¹ determine expression for area of pond	• ¹ $(x-3)(y-2)$ stated or implied by • ³	3
			• ² obtain expression for y	• ² $y = \frac{150}{x}$	
			• ³ demonstrate result	• ³ $A(x) = (x-3)\left(\frac{150}{x}-2\right)$	
				eg $A(x) = \frac{150x}{x} - \frac{450}{x} - 2x + 6$	
				$A(x) = 156 - 2x - \frac{450}{x}$	
Note	s:				
1. A	ccept	any l	egitimate variations for the area of the	e pond in • ¹ , eg $A = 150 - 2(x - 3) - 2(y$)(1.5).
2. C	o not	penal	ise the omission of brackets at \bullet^1 . See	Candidate A.	
3. T	he sul	bstitu	tion for y at \bullet^3 must be clearly shown f	or \bullet^3 to be available.	
Com	monly	v Obse	rved Responses:		

Candidate A		
$A(x) = x - 3 \times y - 2$	●1 ✓	
$A(x) = x - 3 \times \frac{150}{x} - 2$	• ² ✓	
$A(x) = 156 - 2x - \frac{450}{x}$	• ³ •	

Question		on	Generic scheme	Illustrative scheme	Max mark
8.	(b)		• ⁴ express A in differentiable form	• ⁴ $156 - 2x - 450x^{-1}$ stated or implied by • ⁵	6
			● ⁵ differentiate	• ⁵ $-2+450x^{-2}$	
			 equate expression for derivative to 0 	• $-2 + 450x^{-2} = 0$	
			• ⁷ solve for x	$\bullet^7 x = 15$	
			• ⁸ verify nature of stationary point	• ⁸ table of signs for derivative \therefore maximum or $A''(x) = -900x^{-3}$ and $A''(15) < 0$ \therefore maximum	
			• ⁹ determine maximum area	•9 $A = 96(m^2)$	
Note	s:				

4. For a numerical approach award 0/6.

5. •⁶ can be awarded for $450x^{-2} = 2$.

6. For candidates who integrate any term at the •⁵ stage, only •⁶ is available on follow through for setting their 'derivative' to 0.

7. \bullet^7 , \bullet^8 , and \bullet^9 are only available for working with a derivative which contains an index ≤ -2 .

8.
$$\sqrt{\frac{450}{2}}$$
 must be simplified at \bullet^7 or \bullet^8 for \bullet^7 to be awarded.

9. Ignore the appearance of -15 at mark \bullet^7 .

10. •⁸ is not available to candidates who consider a value of $x \le 0$ in the neighbourhood of 15.

11. \bullet^9 is still available in cases where a candidate's table of signs does not lead legitimately to a maximum at \bullet^8 .

12. •⁸ and •⁹ are not available to candidates who state that the maximum exists at a negative value of x.

Question		n	Generic scheme	e Illustrative schem		ative scheme	Max mark
9.	(a)		• ¹ substitute for <i>y</i> in equation of circle	$ \begin{vmatrix} x^{2} + (3x+7)^{2} - 4x - 6(3x+7) - 7 \\ = 0 \end{vmatrix} $		5	
			• ² arrange in standard quadratic form	•2	$10x^2 + 20x =$	= 0	
			• ³ factorise	•3	10x(x+2) =	= 0	
					• ⁴	• ⁵	
			• ⁴ state <i>x</i> coordinates	•4	0	-2	
			• ⁵ state corresponding <i>y</i> coordinates	•5	7	1	

Notes:

1. \bullet^1 is only available if $\cdot = 0$ appears by the \bullet^3 stage.

- 2. At \bullet^3 , the quadratic must lead to two distinct real roots for \bullet^4 and \bullet^5 to be available.
- 3. At \bullet^3 do not penalise candidates who fail to extract the common factor or who have divided the quadratic equation by 10.
- 4. If a candidate arrives at an equation which is not a quadratic at \bullet^2 stage, then \bullet^3 , \bullet^4 and \bullet^5 are not available
- 5. \bullet^3 is available for substituting correctly into the quadratic formula.
- 6. \bullet^4 and \bullet^5 may be marked either horizontally or vertically.
- 7. Ignore incorrect labelling of P and Q.

Commonly Observed Responses:

Candidate A - substituting for y

$\left(\left(\frac{y-7}{3}\right)^2+y^2-4\left(\frac{y-7}{3}\right)-6\right)$	$y - 7 = 0 \bullet^1 \checkmark$
$\frac{10y^2 - 80y + 70}{9} = 0$	●2 ✓
10(y-1)(y-7) = 0	• ³ 🗸
y = 1 or y = 7	●4 ✓
x = -2 or x = 0	●5 ✓

Q	uestic	on	Generi	c scheme		Illustrative scheme	Max mark
9.	(b)		• ⁶ state centre of	circle		• ⁶ (2, 3)	4
			• ⁷ calculate midp	oint of PQ		• ⁷ (-1, 4)	
			• ⁸ calculate radiu	s of small circle		• ⁸ \sqrt{10}	
			• ⁹ state equation	of small circle		• ⁹ $(x-2)^2 + (y-3)^2 = 10$	
Note	s:						
 Evidence for •⁶ may appear in part (a). Where a candidate uses coordinates for P and Q without supporting working, •⁷ is not available however •⁸ and •⁹ may be awarded. Where candidates find the equation of the larger circle •⁸ and •⁹ are not available. 					hout supporting working, \bullet^7 is not avail rcle \bullet^8 and \bullet^9 are not available.	able,	
Com	monly	v Obse	erved Responses:				
Canc Equa	lidate tion o	B - u : f sma	sing substitution ller circle of form		Can Equ	didate C - using tangency ation of smaller circle of form	
(x –	$(2)^{2} + ($	(y – 3	$)^2 = r^2$	•6 🗸	(<i>x</i> -	$-2)^{2} + (y - 3)^{2} = r^{2}$	•6 🗸
Midp	oint P	Q (–1	, 4)	●7 ✓	Sinc	the $y = 3x + 7$ is tangent to smaller circle	e
(–1-	$(-2)^{2} +$	(4 - 3)	$(s)^2 = r^2$		$10x^2 + 20x + 20 - r^2 = 0$ has equal roots		
$r^2 =$	10		, 	• ⁸ 🗸	\Rightarrow	$20^2 - 4(10)(20 - r^2) = 0$	•7 🗸
(x -	$(2)^{2} + ($	(y-3)	$)^{2} = 10$	•9 ✓	\Rightarrow	$r^2 = 10$	•8 🗸
Ì	,				(x -	$(-2)^{2} + (y - 3)^{2} = 10$	●9 🗸
Candidate D - using P or Q to mid-point as radius							
$r = \sqrt{r}$	(-2+	- 1) ² +	$\overline{\left(1-4\right)^2} = \sqrt{10}$	• ⁸ ×			
$r = \sqrt{r}$	(0+1	$)^{2} + (7)^{2}$	$\overline{(7-4)^2} = \sqrt{10}$	• ⁸ ×			
(x-	$(2)^{2} + ($	(y-3)	$)^{2} = 10$	•9 🖌 2			

Question		n	Generic scheme	Illustrative scheme	Max mark		
10.	(a)		• ¹ evaluate P for $t = 24.55$	• ¹ 929	1		
Note	es:						
1. <i>A</i>	Accept	any a	nswer which rounds 929.0368007	to at least 2 significant figures.			
Com	monly	[,] Obse	erved Responses:				
	1		I.				
	(b)		$ullet^2$ substitute for P and D	• ² 850 = 0.188807(600 - 210) ^k	4		
			• ³ arrange equation in the form $a = b^k$	• ³ $\frac{850}{0.188807} = (600 - 210)^k$			
			• ⁴ write in logarithmic form	• eg $\ln\left(\frac{850}{0.188807}\right) = \ln(600-210)^k$ or $k = \log_{100} \frac{850}{100}$			
				0.188807			
			• ⁵ solve for k	• ⁵ 1.41			
Note	es:						
2. • 3. 4 4. 4 5. T 6. F	 *³ may be implied by *⁴. Any base may be used at *⁴ stage. Accept 1.4 at *⁵. The calculation at *⁵ must follow from the valid use of exponentials and logarithms at *³ and *⁴. See Candidate A. For candidates who take an iterative approach to arrive at the value t = 1.41 award 1/4. However, if, in the iterations P is calculated for t = 1.405 and t = 1.415 then award 4/4. 						
Com	monly	Obse	erved Responses:				
Cano	didate	A - ir	valid use of exponentials	Candidate B - transcription error			
$850 = 0.188807(600 - 210)^k$ $\bullet^2 \checkmark$ $850 = 0.18807(600 - 210)^k$			$850 = 0.18807 (600 - 210)^k$	• ² 🗴			
$850 = 73.63473^{k}$ $\log_{73.63473} 850 = k$ 1.56			• ³ × • ⁴ × • ⁵ ×	$4519.59 = 390^k$ $\bullet^3 \checkmark 1$ $\log_{390} 4519.59$ $\bullet^4 \checkmark 1$ 1.41 $\bullet^5 \checkmark 1$			

[END OF MARKING INSTRUCTIONS]