

2019 Mathematics

Higher Paper 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2019

These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments.

The information in this document may be reproduced in support of SQA qualifications only on a noncommercial basis. If it is reproduced, SQA must be clearly acknowledged as the source. If it is to be reproduced for any other purpose, written permission must be obtained from <u>permissions@sqa.org.uk</u>.

Q	Question		Generic scheme		Illustrative scheme	Max mark
1.	(a)		•1 calculate the midpoint of a	AC	• ¹ (-4, -3)	3
			• ² calculate the gradient of E	3D	$\bullet^2 -\frac{1}{3}$	
			• ³ determine equation of BD		• ³ $3y = -x - 13$	
Note	s:	1				
3. A s [°] 4. ●	at ●³ ao implif [®] ³ is no	ccept ied. it avai	ilable as a consequence of usin any arrangement of a candidat lable as a consequence of usin rved Responses:	te's equa	tion where constant terms have been	
Canc	lidate	A - Pe	erpendicular Bisector of AC	Can	didate B - Altitude through B	
Midp	oint _{AC}	(-4,-	3) •¹ ✓	m_{AC}	=9 • ¹ ^	
m _{AC} =	=9⇒	$m_{\perp} = -$	$-\frac{1}{9}$ $\bullet^2 \times$	m_{\perp}	$=-\frac{1}{9}$ • ² ×	
$9y + x + 31 = 0$ $\bullet^3 \checkmark 2$ For other perpendicular bisectors award 0/3			•3 🗹 2 ndicular bisectors award 0/3	9 <i>y</i>	$+ x = -61 \qquad \qquad \bullet^3 \checkmark 2$	
Canc	lidate	C - M	edian through A	Can	didate D - Median through C	
Midp	oint _{BC}	(4,-1) •1 x	Mic	$\text{lpoint}_{AB}(3,-10)$ • ¹ ×	
m _{AM} :	$=\frac{11}{9}$		• ² <u>1</u>	m _{cn}	$\mathbf{e}^2 \checkmark 1$	
9 <i>y</i> –	11x + 5	53 = 0	• ³ 🖌 2	3 <i>y</i> ·	$+8x+6=0 \qquad \qquad \bullet^3 \checkmark 2$	

Q	uestio	n	Generic scheme	Illustrative scheme	Max mark
	(b)		• ⁴ calculate gradient of BC	•4 —1	3
			 ⁵ use property of perpendicular lines 	● ⁵ 1	
			• ⁶ determine equation of AE	•6 $y = x - 7$	
Note	s:				
6. A si	t • ⁶ ac mplifi	cept ed.	ilable to candidates who find and use a any arrangement of a candidate's equa		
Com	monly	Obse	rved Responses:		
Corre	= <u>-3 -</u> 6 + =1 :-7	dient	● ⁵ <mark>✓ 1</mark> ● ⁶ <mark>✓ 1</mark>		
	(c)		• ⁷ find <i>x</i> or <i>y</i> coordinate	• ⁷ $x = 2$ or $y = -5$	2
			 ⁸ find remaining coordinate of the point of intersection 	• ⁸ $y = -5$ or $x = 2$	
Note	s:				
	,	,	vith no working, award 0/2.		
Com	monly	Obse	rved Responses:		

Q	uestion	Generic scheme	Illustrative scheme	Max mark		
2.		• ¹ express $6\sqrt{x}$ in integrable form	$\bullet^1 6x^{\frac{1}{2}}$	4		
		• ² integrate first term	• ² $\frac{6x^{\frac{3}{2}}}{\frac{3}{2}}$			
		• ³ integrate second term	• $3 \dots - \frac{4x^{-2}}{-2} \dots$			
		• ⁴ complete integration	•4 $4x^{\frac{3}{2}}+2x^{-2}+5x+c$			
Note	s:					
3. D 4. D	o not penal o not penal	Its must be simplified at \bullet^4 stage for \bullet^4 ise the appearance of an integral sign ise the omission of $+c'$ at \bullet^2 and \bullet^3 .				
Com	monly Obse	erved Responses:				
$\int \left(6 \right)$	lidate A $x^{\frac{1}{2}} - 4x^{-3} + \frac{3}{2}$					
<u></u>	$= \frac{6x^{\frac{3}{2}}}{\frac{3}{2}} - \frac{4x^{-2}}{-2} + 5x + c$ $= \frac{12}{3}x^{\frac{3}{2}} + 2x^{-2} + 5x + c$					
$=\frac{12}{3}x^{\frac{3}{2}} + 2x^{-2} + 5x + c$ = $4\sqrt{x^{3}} + \frac{2}{\sqrt{x}} + 5x + c$ • ⁴ ×						
•⁴ ca	nnot be aw	arded over two lines of working				

Q	Question		Generic scheme	Illustrative scheme	Max mark
3.	(a)		• ¹ identify pathway	• ¹ $-\mathbf{p}+\mathbf{r}$	1
Note	s:	1			
1. A	ccept	- P +	R for ● ¹ .		
Com	monly	v Obse	rved Responses:		
	(b)		• ² state an appropriate pathway	• ² eg \overrightarrow{EB} + \overrightarrow{BF} stated or implied by • ³	2
			• ³ express pathway in terms of p , o and r	$\mathbf{q} = \mathbf{e}^3 \mathbf{p} - \mathbf{r} + \frac{3}{4}\mathbf{q}$ or equivalent	
Note	s:				•
2. •	³ can	only b	e awarded for a vector expressed in	terms of all three of p , q and r .	I
Com	monly	v Obse	rved Responses:		
Candidate A - incorrect expression in p, q and r and no pathway stated p-r Award 1/2			nd no pathway stated	Candidate B - incorrect expression in p , q and no pathway stated $\dots + \frac{3}{4}$ q or $\dots + \mathbf{q} - \frac{1}{4}$ q Award	

(Question		Generic scheme		Illustrative scheme	Max mark
4.	(a)		• ¹ state values of a	and b	•1 $a = 0.973, b = 30$	1
Not	es:					
1.	Accept	: <i>u_{n+1}</i> =	$=0.973u_n+30$ for \bullet^1 .			
Con	nmonly	v Obse	rved Responses:			
	(b)	(i)	• ² communicate cor to exist	ndition for limit	• ² a limit exists as the recurrence relation is linear and $-1 < 0.973 < 1$	1
		(ii)	 •³ know how to find •⁴ process limit and 		• ³ $L = 0.973L + 30$ or $L = \frac{30}{1 - 0.973}$ • ⁴ 1100	2
Not			population			
	For • ² a		·.			
3. 4.	or stat or $-1 < ^2$ is no $-1 \le 0$ or stat Do not	ement < a < 1 ot avai $\cdot 973 \le$ ement accep	1 or $ 0.973 < 1$ or 0.973 s such as " 0.973 lie (as <i>a</i> is previously de lable for: 1 or $0.973 < 1$; s such as "it is betwo t $L = \frac{b}{1-a}$ with no fu with no working awa	s between −1 ar efined). een −1 and 1" irther working fo		
	-		rved Responses:			
				u_n	ndidate B - correct rounding $_{+1} = 0.027u_n + 30$ $^{-1}$ $= \frac{30}{1 - 0.027}$ $= 0$ $^{-4}$	× •³ √ 1 √ 1
u_{n+1} A lii L =	Candidate C - no valid limit $u_{n+1} = 2 \cdot 7u_n + 30$ • ¹ × A limit does not exist as $2 \cdot 7 > 1$ • ² × $L = \frac{30}{1 - 2 \cdot 7}$ • ³ ✓ 1 L = 0 • ⁴ ×					

Q	Question		Generic scheme	Illustrative scheme	Max mark			
5.			•1 identify shape and roots	• ¹ parabola with roots at -2 and 4	2			
			• ² interpret shape	• ² parabola with a minimum turning point at $x=1$				
Note	s:							
	1. \bullet^1 and \bullet^2 are only available for attempting to draw a 'parabola'.							
Com	monly	Obse	rved Responses:					

Q	Question		Generic scheme	Illustrative scheme	Max mark
6.	(a)		 •¹ use compound angle formula •² compare coefficients 	• $k \cos x^{\circ} \cos a^{\circ} - k \sin x^{\circ} \sin a^{\circ}$ stated explicitly • $k \cos a^{\circ} = 2, k \sin a^{\circ} = 3$ stated explicitly	4
			 ³ process for k ⁴ process for a and express in required form 	• $\sqrt{13} = \sqrt{13} \cos(x + 56 \cdot 3)^{\circ}$	

Notes:

1. Accept $k(\cos x^{\circ} \cos a^{\circ} - \sin x^{\circ} \sin a^{\circ})$ for •¹.

Treat $k \cos x^{\circ} \cos a^{\circ} - \sin x^{\circ} \sin a^{\circ}$ as bad form only if the equations at the \bullet^2 stage both contain k.

- 2. Do not penalise the omission of degree signs.
- 3. $\sqrt{13}\cos x^{\circ}\cos a^{\circ} \sqrt{13}\sin x^{\circ}\sin a^{\circ}$ or $\sqrt{13}(\cos x^{\circ}\cos a^{\circ} \sin x^{\circ}\sin a^{\circ})$ is acceptable for \bullet^{1} and \bullet^{3} .
- 4. •² is not available for $k \cos x^\circ = 2$, $k \sin x^\circ = 3$, however •⁴ may still be gained. See Candidate F.
- 5. Accept $k \cos a^{\circ} = 2, -k \sin a^{\circ} = -3$ for \bullet^2 .
- 6. •³ is only available for a single value of k, k > 0.
- 7. •⁴ is not available for a value of a given in radians.
- 8. Accept values of *a* which round to 56.
- 9. Candidates may use any form of the wave function for \bullet^1 , \bullet^2 and \bullet^3 .

However, \bullet^4 is only available if the wave is interpreted in the form $k\cos(x+a)^\circ$.

10. Evidence for \bullet^4 may not appear until part (b).

Commonly Observed Responses:

Candidate A		Candidate B Candidate C
$\sqrt{13}\cos a^\circ = 2$	● 1 ▲	$k\cos x^{\circ}\cos a^{\circ} - k\sin x^{\circ}\sin a^{\circ} \qquad \cos x^{\circ}\cos a^{\circ} - \sin x^{\circ}\sin a^{\circ} \\ \bullet^{1} \checkmark \qquad \bullet^{1} \checkmark$
$\sqrt{13}\cos a^{\circ} = 2$ $\sqrt{13}\sin a^{\circ} = 3$	• ² • • ³ •	$\cos a^\circ = 2$ $\cos a^\circ = 2$
$\sqrt{13} \sin a^2 = 3$	●2 ✔ ●3 ✔	$\sin a^\circ = 3 \qquad \bullet^2 \checkmark \qquad \sin a^\circ = 3 \qquad \bullet^2 \checkmark 2$
		$k = \sqrt{13}$ • ³ ✓
$\tan a^\circ = \frac{3}{2}$		$\tan a^\circ = \frac{3}{2}$ (Not consistent) $\tan a^\circ = \frac{3}{2}$
$a = 56 \cdot 3$		$a = 56 \cdot 3$ with equations $at \bullet^2$. $a = 56 \cdot 3$
$\sqrt{13}\cos(x+56\cdot 3)^\circ$	•4 🗸	$\sqrt{13}\cos(x+56\cdot3)^\circ$ $\bullet^3\checkmark$ \bullet^4 \checkmark $\sqrt{13}\cos(x+56\cdot3)^\circ$ \bullet^4 \checkmark

Question	Gene	ric scheme	Ille	ustrative scheme	Max mark
Candidate D - er $k \cos x^{\circ} \cos a^{\circ} - b$		Candidate E - errors $k \cos x^{\circ} \cos a^{\circ} - k \sin a^{\circ}$		Candidate F - use o $k \cos x^{\circ} \cos a^{\circ} - k \sin a$	
$k \cos a^\circ = 3$ $k \sin a^\circ = 2$	• ² ×	$k \cos a^{\circ} = 2$ $k \sin a^{\circ} = -3$	• ² ×	$k \cos x^{\circ} = 2$ $k \sin x^{\circ} = 3$	• ² ×
$\tan a^\circ = \frac{2}{3}$ $a = 33.7$		$\tan a^\circ = -\frac{3}{2}$ $a = 303 \cdot 7$		$\tan a^\circ = \frac{3}{2}$ $x = 56 \cdot 3$	
$\sqrt{13}\cos(x+33\cdot7)$	° • ³ ✓ • ⁴ ✓ 1	$\sqrt{13}\cos(x+303\cdot7)^\circ$	• ³ ✓ • ⁴ ✓ 1	$\sqrt{13}\cos(x+56\cdot 3)^\circ$	• ³ ✓ • ⁴ ✓ 1
Candidate G $k \cos A \cos B - k \sin A^{\circ} = 2$ $k \sin A^{\circ} = 3$ $\tan A^{\circ} = \frac{3}{2}$ $a = 56 \cdot 3$ Unclusted Uncl	•1 x •2 x ear at this e whether A es to a or to x .				
(b)	 •⁵ link to (a) •⁶ solve for x+ •⁷ solve for x 	а	 •⁵ √13 cos •⁶ •⁶ 33.69 •⁷ 337.38. 		3 31
Notes:				270 and 227	
	_	n rounds to 34, 326, 39	94 leading to) 270 and 337.	
Commonly Obse	rved Responses:				

Q	Question		Generic	scheme		Illustrative scheme	Max mark
7.	(a) Method 1 •1 identify common factor				Method 1 $x^2 - 4x$ stated or ed by \bullet^2	3	
			• ² complete the s	quare	• ² -6(x	-2) ²	
			• ³ process for <i>r</i> ar required form	nd write in	• ³ -6(x	$(-2)^{2} - 1$	
			Meth •1 expand comple	n od 2 ted square form	• $px^2 +$	Method 2 $2pqx + pq^2 + r$	
			• ² equate coeffici	ents	• ² $p = -6$	6, $2pq = 24 pq^2 + r$:	=–25
			• ³ process for <i>q</i> arrequired form	nd <i>r</i> and write ii	$\bullet^3 - 6(x)$	$(-2)^{2} - 1$	
			lable in cases wher rved Responses:	e <i>p</i> > 0 .			
	moniy lidate		rvea kesponses:		Candidata D		
	$x^2 - 4$				Candidate B $px^2 + 2pqx + 2p$	$na^2 \perp r$	•1 🗸
	/		25		$p = -6, 2pq = 24, pq^2 + r = -25 \qquad \bullet^2 \checkmark$		
- 6(($(x-2)^{2}$	-4)-	-25	●1 ✔ ●2 ✔	p = -0, 2pq = -2, r = -		• ² ✓
\ `	$(x-2)^2$ -		n to general markir	• ³ ✓ ng principle (h)	<i>q</i> - 2, <i>i</i> -	• ³ is lost as an completed squ	swer is not in
Cano	lidate	С			Candidate D		
-	c ² + 24	-	5	• ¹ ×	-		
-6((x+12)) ² –14	4)-25	• ² 🗸 1	$-6((x+12)^2 -$	-144)–25	•1 ^ •2 ×
–6 (x	(x + 12)	2 + 839)	• ³ 🖌 1	$-6(x+12)^{2}+$	839	• ³ 🖌 1
Canc	lidate	E			Candidate F		
–6 (.:	$(x-2)^{2}$	-1			$-6x^{2}+24x-2$		-1 +
Chec	Check: $= -6(x^2 - 4x + 4) - 1$			$= 6x^{2} - 24x + $ = 6(x ² - 4x	-	● ¹ ¥	
			$-6x^{2} + 24x - 24 - 1$ $-6x^{2} + 24x - 25$		$= 6(x-2)^2$		•² <mark>✓ 1</mark>
				Award 3/3	$=-6(x-2)^2$		• ³ ×

Q	Question		Generic scheme	Illustrative scheme	Max mark
	(b)		Method 1 • ⁴ differentiate	Method 1 • 4 -6 x^{2} + 24 x - 25	3
			• ⁵ link with (a) and identify sign of $(x-2)^2$	• ⁵ $f'(x) = -6(x-2)^2 - 1$ and $(x-2)^2 \ge 0 \forall x$	
			• ⁶ communicate reason	• eg : -6 $(x-2)^2 - 1 < 0 \forall x$ \Rightarrow always strictly decreasing	
		1	Method 2	Method 2	
			• ⁴ differentiate	$\bullet^4 -6x^2 + 24x - 25$	
			• ⁵ identify maximum value of $f'(x)$	 •⁵ 'maximum value is -1 ' or annotated sketch including x-axis 	
			• ⁶ communicate reason	• -1<0 or 'graph lies below x-axis' $\therefore f'(x) < 0 \forall x$	
				\Rightarrow always strictly decreasing	
Note	s:				
3. li	n Meth	nod 1,	do not penalise $(x-2)^2 > 0$ or the om	ission of $f'(x)$ at $ullet^5$.	
			accept $-6(x-2)^2 \le 0$ or $-6(x-2)^2 < 0$		
1				the derivative of the given function. D	o not
1			ments such as ' $(something)^2 \ge 0$ ', 'S is still available.	ureu ili gsquareu 20'.	
Com	monlv	v Obse	erved Responses:		
	lidate		• • • • • • • •		
		_			

Candidate G	
$f'(x) = -6x^2 + 24x - 25$	•4 🗸
$f'(x) = -6(x-2)^2 - 1$	●2 ∨
$-6(x-2)^2-1<0$	
\Rightarrow strictly decreasing	●6

^

Q	uestic	on	Generic scheme	Illustrative scheme	Max mark
8.	(a)		Method 1	Method 1	3
			•1 equate composite function to <i>x</i>	•1 $f(f^{-1}(x)) = x$	
			• ² write $f(f^{-1}(x))$ in terms of $f^{-1}(x)$	• ² $\sqrt[3]{f^{-1}(x)} + 8 = x$	
			• ³ state inverse function	• ³ $f^{-1}(x) = (x-8)^3$	
			Method 2	Method 2	
			• ¹ write as $y = f(x)$ and start to rearrange	• $y = f(x) \Rightarrow x = f^{-1}(y)$ $y - 8 = \sqrt[3]{x}$	
			• ² express x in terms of y	$\bullet^2 x = (y - 8)^3$	
			• ³ state inverse function	• ³ $f^{-1}(y) = (y-8)^3$ $\Rightarrow f^{-1}(x) = (x-8)^3$	
Note	c•				
1. Ir 2. Ir 3. A 4. ر	Meth Meth t• ³ st $y = (x \cdot$	nod 2, age, a - 8) ³ (accept ' $y - 8 = \sqrt[3]{x}$ ' without reference accept $f^{-1}(x) = (x - 8)^3$ without reference accept f^{-1} written in terms of any dumin does not gain \bullet^3 . (8) ³ with no working gains 3/3.	ence to $f^{-1}(y)$ at \bullet^3 .	

Question	Generic scheme		Illustrative scheme	9	Max mark	
Commonly Obse	rved Responses:	L				
Candidate A - m	ultiple expressions for $y = f(x)$	Cand	idate B - multiple expressio	ons for $y =$	=f(x)	
$\int f(x) = \sqrt[3]{x} + 8$		$\int f(x)$	$=\sqrt[3]{x}+8$			
$y = \sqrt[3]{x} + 8$		-	\sqrt{x} + 8			
$y - 8 = \sqrt[3]{x}$		$x = \sqrt[3]{x}$	\sqrt{y} + 8			
$x = (y - 8)^3$		y = ($(x-8)^3$			
$y = (x - 8)^3$			$(x) = (x - 8)^3$	Award	2/3	
$\int f^{-1}(x) = (x-8)^3$	Award 2/3		<i>(N</i> C)	, iviara	2,5	
Candidate C - BE	EWARE	Cand	idate D			
$\int f'(x) = \dots$	• ³ 🗴	$\int f^{-1}($	$x) = x - 8^3$			
		with	no working	Award	0/3	
Candidate E		1				
$ x \to \sqrt[3]{x} \to \sqrt[3]{x} + 8 $	B = f(x)					
$3\sqrt{3} \rightarrow +8$						
$\therefore -8 \rightarrow ()^{3}$	•1 ✓	- aw	arded for knowing to			
(x-8	$(3)^3 \qquad \bullet^2 \checkmark$]	perform inverse			
$f^{-1}(x) = (x - 8)$,	0	perations in reverse			
	-)					
(b)	• ⁴ state domain		x^4 9 ≤ x ≤ 18, x ∈ ℝ		1	
Notes:						
	The contrainer of the m					
1. Do not penalise the omission of $x \in \mathbb{R}$.						
Commonly Observed Responses:						

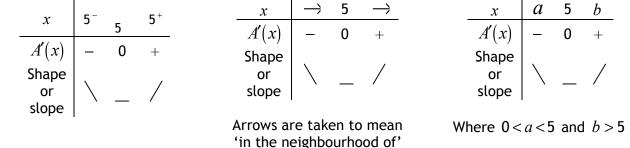
Question		n	Gener	ic scheme		Illustrative scheme	•	Max mark
9.	9. (a) •1 identify initial p		l power		• ¹ 120		1	
Note	es:							
Com	monly	Observ	ved Responses:					
		-						
								-
	(b)	•	² interpret info	rmation		• ² $102 = 120e^{-0.0079t}$ stated or implied by • ³		4
		•	³ process equat	ion		• ³ $e^{-0.0079t} = 0.85$		
		•	⁴ write in logari	ithmic form		•4 $\log_e 0.85 = -0.0079t$		
		•	⁵ process for t			• ⁵ 20·572		
Note	es:	1						
6. 7 7. F	The cal	culatior didates	who take an ite	erative approac	h to ai	of exponentials and logarithm rive at $t = 20.6$ award 1/4. = 20.55 and $t = 20.65$ then		
Com	monly	Observ	ved Responses:					
	didate				Can	didate B		
	$= 120e^{-t}$			• ² ✓ • ³ ✓	102	$=120e^{-0.0079t}$	●2 ✓	
)79 t log ₁₀ e	●4 ✓	$e^{-0.0}$	$^{079t} = 0 \cdot 85$	•3 🗸	
20	•		010	•5 🗸	t = 1	20 · 6	●4 ∧	● ⁵ <mark>✓ 1</mark>
Can	didate	С			Can	didate D		
\log_{e}	0.85=	=0.00	79 <i>t</i>	●4 🗸	log	$_{2}0.85 = -0.0079t$		•4 🗸
	20·6 ye			●5 ✓	t = 1	20 years 6 months	• ⁵ 🗶	
t = 2	0 years	s 6 mon	subsequ	ct conversion lent to answer t penalised				
	didate							
	$100e^{-0}e^{-0}$							
-	-	.15 = 0.00	79 <i>t</i>	• ³ <u>√ 1</u> • ⁴ <u>√ 1</u>				
- 0	·1	- 0.00	1 71	• ⁻ <u>√ 1</u> • ⁵ <u>√ 1</u>				
0								

Q	Question		Generic scheme	Illustrative scheme	Max mark		
10.	(a)		 use -3 in synthetic division or in evaluation of quartic 	$ \begin{array}{c cccccccccccccccccccccccccccccccccc$	2		
				or $\frac{3 \times (-3)^4 + 10 \times (-3)^3 + (-3)^2}{-8 \times (-3) - 6}$			
			 ² complete division/evaluation and interpret result 	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
				Remainder = 0: $(x+3)$ is a factor or $f(-3)=0$: $(x+3)$ is a factor			
Note	s:				I		
a	 Communication at •² must be consistent with working at that stage ie a candidate's working must arrive legitimately at 0 before •² can be awarded. Accept any of the following for •²: 						
	• ' $f(-3)=0$ so $(x+3)$ is a factor'						
3. C	 'since remainder = 0, it is a factor' the '0' from any method linked to the word 'factor' by 'so', 'hence', ∴, →, ⇒ etc. B. Do not accept any of the following for •²: double underlining the '0' or boxing the '0' without comment 'x = -3 is a factor', ' is a root' the word 'factor' only, with no link. 						

Commonly Observed Responses:

Ques	tion	Generic scheme	Illustrative scheme	Max mark
(b)	• ³ identify cubic and attempt to factorise	• ³ eg 3 1 -2 -2 	5
		• ⁴ find second factor	• ⁴ eg $\begin{array}{cccccccccccccccccccccccccccccccccccc$	
		 •⁵ identify quadratic •⁶ evaluate discriminant •⁷ interpret discriminant and factorise fully 	leading to $(x-1)$ • ⁵ $3x^2 + 4x + 2$ • ⁶ -8 • ⁷ since -8 < 0, quadratic has no (real) factors leading to $(x+3)(x-1)(3x^2+4x+2)$	
inspe	ection ga	who arrive at $(x+3)(x-1)(3x^2+4x+2)$ ain \bullet^3 , \bullet^4 and \bullet^5 . \bullet^6 may appear in the quadratic formul		

- 6. Accept '-8 < 0 so no real roots' with the fully factorised quartic for \bullet^7 :
- 7. Do not accept any of the following for \bullet^7 :
 - $(x+3)(x-1)(3x^2+4x+2)$ does not factorise
 - $(x+3)(x-1)(\dots \dots)(\dots \dots)$ cannot factorise further.
- 8. Accept $(x+3)(x-1)3x^2+4x+2$, with a valid reason for \bullet^7 .
- 9. Where the quadratic factor obtained at \bullet^5 can be factorised, \bullet^6 and \bullet^7 are not available.


Commonly Observed Responses:						
	Candidate B					
●5 ✓	$(x+3)(x-1)(3x^2+4x+2)$	•5 🗸				
● ⁶ ▲ ● ⁷ ✓ 1	$b^2 - 4ac < 0$ so does not factorise	• ⁶ ^ • ⁷ ^				
	• ⁵ ✓	• ⁵ \checkmark Candidate B (x+3)(x-1)(3x ² +4x+2) b ² -4ac < 0				

Q	Question		Generic scheme	Illustrative scheme	Max mark
11.	(a)		• ¹ express A in terms of x and h	•1 $(A=)$ 16 x^{2} +16 xh	3
			• ² express height in terms of x	$\bullet^2 h = \frac{2000}{8x^2}$	
			• ³ substitute for <i>h</i> and complete proof	• ³ $A = 16x^{2} + 16x \times \frac{2000}{8x^{2}}$ leading to $A = 16x^{2} + \frac{4000}{x}$	
Note	s:				
			es who omit some of the surfaces of th	e box, only •² is available.	
	(b)		• ⁴ express <i>A</i> in differentiable form	• $16x^2 + 4000x^{-1}$	6
			• ⁵ differentiate	• ⁵ $32x - 4000x^{-2}$	
			 equate expression for derivative to 0 	• $32x - 4000x^{-2} = 0$	
			• ⁷ process for x	•7 5	
			• ⁸ verify nature	 ⁸ table of signs for a derivative (see below) ∴ minimum 	
				or $A''(x) = 96 > 0 \implies$ minimum	
			• ⁹ evaluate A	• ⁹ <i>A</i> = 1200 or min value = 1200	

Notes:

- 4. For a numerical approach award 0/6.
- 5. •⁶ can be awarded for $32x = 4000x^{-2}$.
- 6. For candidates who integrate any term at the •⁵ stage, only •⁶ is available on follow through for setting their 'derivative' to 0.
- 7. •⁷, •⁸ and •⁹ are only available for working with a derivative which contains an index ≤ -2 .
- 8. $\sqrt[3]{\frac{4000}{32}}$ must be simplified at \bullet^7 or \bullet^8 for \bullet^7 to be awarded.
- 9. •⁸ is not available to candidates who consider a value of $x \le 0$ in the neighbourhood of 5.
- 10. •⁹ is still available in cases where a candidate's table of signs does not lead legitimately to a minimum at \bullet^8 .
- 11. \bullet^8 and \bullet^9 are not available to candidates who state that the minimum exists at a negative value of X. See Candidates C and D.

For the table of signs for a derivative, accept:

- For this question do not penalise the omission of 'x' or the word 'shape'/'slope'.
- Stating values of A'(x) in the table is an acceptable alternative to writing '+' or '-' signs. Values must be checked for accuracy.

• The only acceptable variations of A'(x) are: A', $\frac{dA}{dx}$ and $32x - 4000x^{-2}$.

```
Commonly Observed Responses:
```

commonly observed Responses.				
Candidate A - differentiating over	multiple lines	Candidate B - differentiat $A = 16x^2 + 4000x^{-1}$	ing over multiple lines ● ⁴ ✓	
$A'(x) = 32x + 4000x^{-1}$		$A'(x) = 32x + 4000x^{-1}$		
$A'(x) = 32x - 4000x^{-2}$	•5 🗶	$A'(x) = 32x - 4000x^{-2}$	●5 🗶	
$32x - 4000x^{-2} = 0$	● ⁶ <mark>✓ 1</mark>	$32x - 4000x^{-2} = 0$	• ⁶ 🖌 1	
Candidate C - only considers 5		Candidate D - considers 5 and negative 5 in separate tables		
$A = 16x^2 + 4000x^{-1}$	•4 🗸	$A = 16x^2 + 4000x^{-1}$	•4 🗸	
$A' = 32x - 4000x^{-2} = 0$	●5 🗸 ●6 🗸	$A' = 32x - 4000x^{-2} = 0$	●5 🗸 ●6 🗸	
$x = \pm 5$	•7 🗶	$x = \pm 5$	•7 🗴	
$ x \rightarrow 5 \rightarrow$		$x \rightarrow 5 \rightarrow$	$x \mid \rightarrow -5 \rightarrow$	
- 0 +		- 0 +	0 +	
		$ A' \setminus - /$	$A' \mid / - \setminus$	
: minimum	• ⁸ 🖌 1	\therefore minimum when $x = 5$	•8 🖌 1	
A=1200 or min value=1200	• ⁹ 🖌 1	A = 1200 or min value = 1	200 / \•9 / 1	
			lgnore incorrect working in second table	

Q	uestion	Generic scheme	Illustrative scheme	Max mark
12.		Method 1 •1 state linear equation	Method 1 • $\log_4 y = 3x - 1$	5
		• ² introduce logs	• $\log_4 y = 3x \log_4 4 - \log_4 4$	
		• ³ use laws of logs	• $\log_4 y = \log_4 4^{3x} - \log_4 4$	
		• ⁴ use laws of logs	• $\log_4 y = \log_4 \left(\frac{4^{3x}}{4}\right)$ or	
		• ⁵ state a and b	$\log_4 y = \log_4 4^{-1} 4^{3x}$ • ⁵ $a = \frac{1}{4}, b = 64$	
		Method 2 •1 state linear equation	Method 2 •1 $\log_4 y = 3x - 1$	5
		• ² convert to exponential form	• ² $y = 4^{3x-1}$	
		• ³ use laws of indices	• $y = 4^{-1} 4^{3x}$	
		• ⁴ state a	• ² $y = 4^{3x-1}$ • ³ $y = 4^{-1}4^{3x}$ • ⁴ $a = \frac{1}{4}$	
		• ⁵ state b	• $b = 64$	
		Method 3	Method 3 The equations at •1, •², •³ and • ⁴ must be stated explicitly.	5
		• ¹ introduce logs to $y = ab^x$	•1 $\log_4 y = \log_4 ab^x$	
		• ² use laws of logs	• ² $\log_4 y = \log_4 a + x \log_4 b$	
		• ³ interpret intercept	• ³ $-1 = \log_4 a$	
		• ⁴ interpret gradient	•4 $3 = \log_4 b$	
		• ⁵ state a and b	• ⁵ $a = \frac{1}{4}, b = 64$	

Question	Generic scheme	Illustrative scheme	Max mark				
	Method 4 •1 interpret point on log graph	Method 4 •1 $x = 3$ and $\log_4 y = 8$	5				
	• ² convert from log to exponential form	• $x=3$ and $y=4^8$					
	• ³ interpret point and convert	• $x = 0$ and $\log_4 y = -1$					
		$x = 0$ and $y = 4^{-1}$					
	• ⁴ substitute into $y = ab^x$ and evaluate a	•4 $4^{-1} = ab^0 \Rightarrow a = \frac{1}{4}$					
	• ⁵ substitute other point into $y=ab^x$ and evaluate b	• ⁵ $4^8 = \frac{1}{4}b^3 \Longrightarrow b = 64$					
Notes:							
1. In any metho	od, marks may only be awarded within	a valid strategy using $y = ab^x$.					
2. Accept $y = \frac{1}{2}$	$\frac{1}{4} \cdot 64^{x}$ for \bullet^{5} .						
 Markers must identify the method which best matches the candidates approach; they must not mix and match between methods. 							
4. Penalise the omission of base 4 at most once in any method. 5. Do not accept $a = 4^{-1}$.							
Commonly Observed Responses:							

Q	uestion	Generic scheme	Illustrative scheme	Max mark
13.		• ¹ interpret information given	•1 $f'(x) = 3x^2 - 16x + 11$ or $f(x) = \int (3x^2 - 16x + 11) dx$	5
		• ² integrate any two terms	• ² eg $\frac{3x^3}{3} - \frac{16x^2}{2}$	
		• ³ complete integration	• ³ +11 $x + c$	
		• ⁴ interpret information given and substitute	• ⁴ 0 = 7 ³ - 8 × 7 ² + 11 × 7 + c	
		• ⁵ process for c and state	• ⁵ $f(x) = x^3 - 8x^2 + 11x - 28$	
		expression for $f(x)$		
Note	s:			
1. F	or candidat	es who make no attempt to integrat	e to find $f(x)$ award 0/5.	
2. C	o not penal	ise the omission of $f(x)$ or dx or the	he appearance of $+c$ at \bullet^1 .	
		rms have been integrated correctly		
1		es who omit $+c$, only \bullet^1 and \bullet^2 are a		
6. C	andidates n		and \bullet^3 are not available. s containing \mathcal{X} for \bullet^4 and \bullet^5 to be availab	le. See
-	Candidate B.			
		$x^{3} - 8x^{2} + 11x - 28$ at \bullet^{5} since $y = f($		
		vorking to be awarded.	al line of working for the last mark availa	dle in
Com	monly Obse	rved Responses:		
	•		Candidate B - partial integration	
		-	$f(x) = x^3 - 8x^2 + 11 + c$ • ¹ \checkmark • ² \checkmark • ³	×
$\int f(x)$	$) = 7^3 - 8 \times 7^3$		$0 = 7^3 - 8 \times 7^2 + 11 + c$ $\bullet^4 \checkmark 1$	
c = -	·		c = 38	
$\int f(x)$	$= x^3 - 8x^2$	+11x-28 •5 1	$f(x) = x^3 - 8x^2 + 49$ • ⁵ \checkmark 1	

Question		n	Generic scheme		Illustrative scheme	Max mark
14.			• ¹ expand	•1	uu+uv	4
			•² evaluate u.u	•2	16	
			• ³ determine equation in $\cos heta$	•3	$20\cos\theta = 5$ or $\cos\theta = \frac{5}{20}$	
			• ⁴ evaluate angle	•4	75.5° or 1.31 radians	
Note	s:			•		
2. W a	/here t nd D.	there		nd ∙⁴ ar	e not available, however see Candid	ates C
3. W	/here o	candi	dates use $\left \mathbf{u} ight eq 4$, then $ullet^3$ and $ullet^4$ a	re not a	vailable.	
4. W	/here t	there	is no evidence of using $ \mathbf{u} ^2$, $\mathbf{\bullet}^3$ is	not ava	ilable. See Candidate A.	
			ise omission of units in final answe			
-	-		ppearance of $284 \cdot 5^{\circ}$.			
7. A	ccept	answe	ers which round to 76° or 1·3 radia	ns.		
Com	nonly	Obse	erved Responses:			
Cand	idate	A		Candio	late B	
u.(u	$+\mathbf{v}) =$	u.u +	• U .V ● ¹ ✓	16 + u	$v = 21$ $\bullet^1 \checkmark \bullet$	2 🗸
`	$0\cos\theta$		• ² ×	$\mathbf{u}.\mathbf{v} = \mathbf{S}$	-	
COSA	_17		• ³ ✓ 2	$\cos\theta =$	$\frac{5}{20}$ • ³ \checkmark	
	$=\frac{17}{20}$			$\theta = 75$		
$\theta = 3$	1·7…°)	•4 🗸 1	• • •		
1		C - m	issing working		late D - missing working	
				21–16		
	u.v = 21 - 16			$\cos\theta =$	$\frac{5}{20}$ • ² \checkmark •	3 🗸
$\cos\theta = \frac{5}{20} \qquad \qquad \bullet^1 \checkmark \bullet^3 \checkmark$			● ¹ ✓ ● ³ ✓	$\theta = 75$		
$\theta = 7$			•4 🗸		-	
<u> </u>						

Question			Generic scheme	Illustrative scheme	Max mark
15.	(a)		• ¹ find gradient of radius	• ¹ $-\frac{1}{3}$	3
			• ² state gradient of tangent	•2 3	
Noto			• ³ state equation of tangent	• ³ $y = 3x - 2$	

Notes:

- 1. Do not accept $y = \frac{3}{1}x 2$ for \bullet^3 .
- 2. \bullet^3 is only available as a consequence of trying to find and use a perpendicular gradient.
- 3. At •³ accept, y 3x + 2 = 0 or any other rearrangement of the equation where the constant terms have been simplified.

Commonly Observed Responses:

	(b)	(i)	• ⁴ find coordinates of T	•4 (0,-2)	1
		(ii)	• ⁵ find midpoint CT	• ⁵ (4,5)	3
			• ⁶ find radius of circle with diameter CT	• ⁶ $\sqrt{65}$ stated or implied by • ⁷	
Nete			• ⁷ state equation of circle	• ⁷ $(x-4)^2 + (y-5)^2 = 65$	

Notes:

4. Answers in part (b)(i) must be consistent with answers from part (a).

5. Accept
$$x = 0$$
, $y = -2$ for \bullet^4 .

6.
$$(x-4)^2 + (y-5)^2 = (\sqrt{65})^2$$
 does not gain •⁷.

7. \bullet^7 is not available to candidates who use a line other than CT as the diameter of the circle.

Commonly Observed Responses:

[END OF MARKING INSTRUCTIONS]