

National Qualifications 2019

2019 Mathematics

Higher Paper 1 (Non-calculator)

Finalised Marking Instructions

© Scottish Qualifications Authority 2019

These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments.

The information in this document may be reproduced in support of SQA qualifications only on a non-commercial basis. If it is reproduced, SQA must be clearly acknowledged as the source. If it is to be reproduced for any other purpose, written permission must be obtained from permission@sqa.org.uk.

Marking instructions for each question

Question		on	Generic scheme	Illustrative scheme	Max mark
1.			• ¹ start to differentiate	•1 $2x^3$ or $6x^2$	4
			• ² complete derivative and equate to 0	• ² $2x^3 - 6x^2 = 0$	
			• ³ factorise derivative	• ³ $2x^2(x-3)$	
			• ⁴ process cubic for x	• ⁴ 0 and 3	
Note	s:				

- 1. \bullet^2 is only available if '=0' appears at either \bullet^2 or \bullet^3 stage, however see Candidate A.
- 2. Accept $2x^3 = 6x^2$ for \bullet^2 .
- 3. Accept $x^2(2x-6)$ for •³.
- 4. For candidates who divide by x or x^2 throughout see Candidate B.
- 5. \bullet^3 is available to candidates who factorise **their** derivative from \bullet^2 as long as it is of equivalent difficulty.
- 6. x = 0 and x = 3 must be supported by valid working for \bullet^4 to be awarded.

Commonly Observed Responses:

Candidate A		Candidate B	
Stationary points when	$\frac{dy}{dx} = 0$	$2x^3 - 6x^2 = 0$ $2x^3 = 6x^2$	•1 ✓ •2 ✓ •3 ∧
$\frac{dy}{dx} = 2x^3 - 6x^2$	● ¹ ✓ ● ² ✓	x = 3 Dividing by x^2 is not	• ⁴ x ot valid as $x = 0$ is a solution.
$\frac{dy}{dx} = 2x^2(x-3)$	•3 🗸		
x = 0 and $x = 3$	•4 🗸		

Question		n	Generic scheme		Illustrative scheme		Max mark
2.			• ¹ use discriminant		•1 $(k-5)^2 - 4 \times 1 \times 1$		3
			• ² apply condition and simplify		• ² $k^2 - 10k + 21 = 0 \text{ or } (k-5)^2$	= 4	
			\bullet^3 determine values of k		•3 3, 7		
Note	s:						
1. A 2. W 3. W	ccept /here ³ is av /here	(k - !) candid ailable x app	$(5)^2 - 4$ for \bullet^1 . dates state an incorrect condition e for finding the roots of the quadr ears in any expression, no further i	•² is ratic mark	not available. . See Candidate B. ss are available.		
Com	nonly	0bse	rved Responses:				
Cand For e $(k-!)$	$\left(\frac{1}{10000000000000000000000000000000000$	A roots I×1×1	$b^2 - 4ac = 0$	Can For (<i>k</i> -	didate B equal roots $b^2 - 4ac > 0$ $(-5)^2 - 4 \times 1 \times 1$	•² ¥ •1 ✓	
$k^2 - k^2 = 3$	10 <i>k</i> +: , 7	21	•2 ✓ •3 ✓	$k^2 - k =$	$-10k+21=0$ or $(k-5)^2=4$ 3, 7	• ³ 🖌 1]
Cand	idate	С					
(k-1)	$(5)^2 - 4$	I×1×1	= 0 •1 ✓				
$k^2 - \frac{1}{k} = 3$	10 <i>k</i> = , 7	-21 🔍	• ² ✓ • ³ ✓ No requirement for standard quadratic form				

Question		n	Generic scheme		Illustrative scheme	Max mark	
3.			• ¹ find radius of circle C_1 • ¹ 6 stated or implied by • ²				
			$ullet^2$ state equation of circle C_2		• ² $(x-4)^{2} + (y+2)^{2} = 36$		
Note	s:						
1. A 2. D 3. D 4. F a	1. Accept $\sqrt{3^2 + 1^2 + 26} = 6$ or $\sqrt{-3^2 + -1^2 + 26} = 6$ for \bullet^1 . 2. Do not accept $\sqrt{-3^2 - 1^2 + 26} = 6$ for \bullet^1 . 3. Do not accept $(x-4)^2 + (y+2)^2 = 6^2$ for \bullet^2 . 4. For candidates whose working for $g^2 + f^2 - c$ does not arrive at a positive value, no marks are available. See Candidate A						
Com	monly	^v Obse	rved Responses:	T			
Canc $\sqrt{3^2}$ (x-	Candidate A - 'fudging' negative values $\sqrt{3^2 + 1^2 - 26} = 4$ $\bullet^1 \times \bullet^2 \times$ $(x-4)^2 + (y+2)^2 = 16$						

Q	uestic	n	Generic scheme	Illustrative scheme	Max mark			
4.	(a)		• ¹ interpret recurrence relation	• ¹ $9=6m+c$	3			
			• ² interpret recurrence relation	• ² $11 = 9m + c$				
			• ³ find m and c	• $m = \frac{2}{3}$ and $c = 5$				
Note	s:							
1. C 2. C	orrect o not	answ penal	ver with no working award 0/3. ise $9 = m6 + c$ or $11 = m9 + c$ at \bullet^1 and 2	• ² .				
3. F a	or can ward :	didat 2/3.	es who state $m = \frac{2}{3}$, $c = 5$ and then vertex $c = 5$	rify that these values work for the given	terms,			
Com	monly	Obse	erved Responses:					
	(b)		• ⁴ calculate term	•4 $\frac{37}{3}$ or $12\frac{1}{3}$	1			
Note	s:							
4. T 5. A	 The answer in (b) must be consistent with the values found in (a). Accept 12 · 3 or 12 · 3 for •⁴. Do not accept a rounded answer. 							
Com	monly	Obse	erved Responses:					

_			Conorio			Illustee	4		Max
Q	uestic	on	Generic	scheme		Illustra	tive scheme		mark
5.	(a)		• ¹ find an appropr	iate vector eg A	AB •	eg $\overrightarrow{AB} = \begin{pmatrix} 3 \\ -6 \\ 3 \end{pmatrix}$			3
			•² find a second v compare	vector eg HC ar	nd •	eg $\overrightarrow{BC} = \begin{pmatrix} 4 \\ -8 \\ 4 \end{pmatrix}$	$\therefore \overrightarrow{AB} = \frac{3}{4}\overrightarrow{BC}$		
			• ³ appropriate cor	nclusion	•	$\dots \Rightarrow AB \text{ is p}$ (common dir and B is a co $\Rightarrow A,B \text{ and } C$	barallel to BC ection) mmon point are collinear.		
Note	s:	I							
2. V 3. • 4. C 5. D	Vhere ³ can Candid commo Do not	• ² is r only b ates v on poin accep	is a mechanistent vec of awarded, if a can who state that 'poin of \Rightarrow collinear' do of 'a, b and c are co	didate states t didate has stated hts are parallel' o not gain •3. The ollinear' at •3.	hat Al d 'para or 'veo re mu	$\vec{S} = \vec{BC}$, only \bullet^1 illel', 'commo ctors are colling to be reference	is available. n point' and 'co lear' or 'paralle e to points A, B	ollinear' and sh and C.	are
Com	monly	v Obse	erved Responses:						
	lidate	A - m	issing labels		Candi	date B			
$ \begin{vmatrix} 3 \\ -6 \\ 3 \end{vmatrix} $				● ¹ ▲	$\overrightarrow{AB} = $	$\begin{pmatrix} 3 \\ -6 \\ 3 \end{pmatrix}$		•1 🗸	
4 -8 4		$\overrightarrow{B} = \frac{3}{4}$	BC Missing labels a	$\bullet^2 \checkmark 1$	$\overrightarrow{BC} = \left(\begin{array}{c} \\ \end{array} \right)$	$\begin{pmatrix} 4\\ -8\\ 4 \end{pmatrix}$			
⇒ Al	3 is pa	rallel	to BC and		$ \begin{pmatrix} 3 \\ -6 \\ 3 \end{pmatrix} $	$=3\begin{pmatrix}1\\-2\\1\end{pmatrix}$ and $\begin{pmatrix}1\\-2\\1\end{pmatrix}$	$\begin{pmatrix} 4 \\ -8 \\ 4 \end{pmatrix} = 4 \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$	●2 ✓	
$ \Rightarrow A,$	B and	d C are	e collinear	• ³ <mark>✓ 1</mark>	∴ AB =	$=\frac{4}{3}\overline{BC}$	Ignore working to correct stat made on previ	g subsequ ement ous line.	uent
					$\Rightarrow AB \\ B is \\ \Rightarrow A, E$	is parallel to B a common po and C are col	C and int linear	•3 🗸	

Question	Generic scheme	Illustrativ	ve scheme Max mark	
(b)	• ⁴ state ratio	•4 3:4	1	
Notes:				
6. Answers in the vectors 7. In this case 8. The only ac For $\frac{BC}{AB} = \frac{4}{3}$ 9. Accept unit 10. Where a case	(b) must be consistent with the com in (a). See Candidates C and D. b, the answer for • ⁴ must be stated e cceptable variations for • ⁴ must be re- cceptable variations for • ⁴ must be stated in the comparison of the states for • ⁴ , eg $\frac{3}{4}$: 1 or 1: $\frac{4}{3}$. Indidate states multiple ratios which	ponents of the vectors xplicitly in part (b). elated explicitly to AB a n part (b) award •4. See are not equivalent, aw	in (a) or the comparison of and BC. e Candidate E. vard 0/1.	
Commonly Ob	served Responses:			
Candidate C -	using components of vectors	Candidate D - using comparison of vectors		
(a) $\overrightarrow{AB} = \begin{pmatrix} 3 \\ -6 \\ 3 \end{pmatrix}$	• ¹ ✓	(a) $\overrightarrow{AB} = \begin{pmatrix} 3 \\ -6 \\ 3 \end{pmatrix}$	•1 🗸	
$\overrightarrow{BC} = \begin{pmatrix} 4 \\ -8 \\ 4 \end{pmatrix}$		$\overrightarrow{\mathrm{BC}} = \begin{pmatrix} 4 \\ -8 \\ 4 \end{pmatrix}$		
$\overrightarrow{BC} = \frac{3}{4}\overrightarrow{AB}$	• ² x	$\overrightarrow{BC} = \frac{3}{4}\overrightarrow{AB}$	• ² ×	
(b) 3:4	•4 🗸	(b) 4:3	• ⁴ 🖌 1	
Candidate E - $\frac{AB}{BC} = \frac{3}{4}$ Ratio = 4:3 -	acceptable variation ● ⁴ ✓ Ignore working subsequent to correct statement made on previous line	Candidate F - trivial ra Ratio is 1:1	atio ● ⁴ <mark>✓ 2</mark>	

Question		on	Generic scheme	Illustrative scheme	Max mark			
6.			• ¹ write in differentiable form	•1 $(1-3x)^{-5}$ stated or implied by •2	3			
			• ² start to differentiate	• ² $-5(1-3x)^{-6}$				
			• ³ complete differentiation	• ³ ×(-3)				
Note	Notes:							
1. W	1. Where candidates attempt to expand $(1-3x)^{-5}$, no further marks are available.							

2. \bullet^2 is only available for differentiating an expression with a negative power.

Commonly Observed Response	onses:		
Candidate A		Candidate B	
$y = (1 - 3x)^{-5}$	●1 ✓	$y = (1 - 3x)^{-5}$	•1 🗸
$\frac{dy}{dx} = -5(1-3x)^{-6} \times -3$	• ² ✓ • ³ ✓	$\frac{dy}{dx} = -15(1-3x)^{-6}$	• ² ✓ • ³ ≭
$\frac{dy}{dx} = -15(1-3x)^{-6}$			
Candidate C		Candidate D - differentiatir	ng over two lines
$y = (1 - 3x)^{-5}$	• ¹ 🗸	$y = (1 - 3x)^{-5}$	•1 🗸
$\frac{dy}{dx} = -5(1-3x)^{-6} \times -3$	•² ✓ •³ ≭	$\frac{dy}{dx} = -5\left(1 - 3x\right)^{-6}$	• ² ✓ • ³ ∧
		$\frac{dy}{dx} = 15(1-3x)^{-6}$	

Question		Generic scheme	Illustrative scheme	
7.	Method 1		Method 1	4
		• Use $m = \tan \theta$	• $m = \tan 30^\circ$	
		• ² find gradient of L	$\bullet^2 \frac{1}{\sqrt{3}}$	
		• ³ use property of perpendicular lines	• ³ $-\sqrt{3}$	
		• ⁴ determine equation of line	•4 $y = -\sqrt{3}x - 4$	
		Method 2	Method 2	
		 find angle perpendicular line makes with the positive direction of the x-axis. 	n $\bullet^1 30^\circ + 90^\circ = 120^\circ$ stated or implied by \bullet^2	
		• ² use $m = \tan \theta$	• ² $m = \tan 120^{\circ}$	
		• ³ find gradient of perpendicular line	$\bullet^3 -\sqrt{3}$	
		• ⁴ determine equation of line	•4 $y = -\sqrt{3}x - 4$	
Notes:	•		· · · · · · · · · · · · · · · · · · ·	
1. In Meth trigono In Meth	iod 1, metric iod 2,	where candidates make no referenc c ratio, •1 and •2 are unavailable. where candidates use an incorrect t	e to a trigonometric ratio or use an incorr rigonometric ratio \bullet^2 and \bullet^3 are unavailab	ect le.
2. Accept	<i>y</i> +4	$=-\sqrt{3}(x)$ at • ⁴ , but do not accept y	$y + 4 = -\sqrt{3}(x - 0).$	
3. In Meth	od 1,	• ⁴ is only available if the candidate	has attempted to use a perpendicular grad	lient.
Commonly	y Obse	erved Responses:		
Candidate	Α		Candidate B	
$m = \frac{1}{\sqrt{2}}$ (v	with o	r without diagram) •1 ^ •2 🗸 2	$m = \tan \theta$ (with or without diagram).	-
$m_{\perp} = -\sqrt{3}$		• ³ <mark>√ 1</mark>	$m = \frac{1}{\sqrt{3}}$]
Candidate	C		Candidate D	
$m = \tan \theta =$	= 30	•1 🗴	$m = \tan^{-1} 30 \qquad \bullet^1 \mathbf{x}$	
$m = \frac{1}{\sqrt{3}}$		• ² 🗹 1	$m = \frac{1}{\sqrt{3}} \qquad \bullet^2 \checkmark 1$	I
Candidate	E			
$1 \tan 30 = \frac{1}{\sqrt{3}}$	$\frac{1}{3}$	•1 ^		
$m_{\perp} = -\sqrt{3}$		• ² ✓ 1 • ³ ✓ 1		

Question		on	Gener	ic scheme		Illustrative scheme	Max mark
8.	(a)		• ¹ state integral		•	$\int_{-1}^{2} \left(-x^2 + x + 2 \right) dx$	1
Note	es:		1		ł		
1. Evidence for • ¹ may be appear in part (b). How answer part (a), • ¹ is not available. 2. • ¹ is not available to candidates who omit the 3. • ¹ is awarded for a candidates final expression $\int_{-1}^{2} ((x^{2}+2x+3)-(2x^{2}+x+1)) dx \text{ or } \int_{-1}^{2} (x^{2}+2x) dx$					ever, w mits or or the 3) <i>dx</i> –	here candidates make no attempt ' dx '. area. However, accept $\int_{-1}^{2} (2x^{2} + x + 1) dx$ without further v	to vorking.
4. Fo	or $\int_{-1}^{2} x^{2}$	$x^{2} + 2x^{2}$	$+3-2x^2+x+1 dx$, see Candidates	A and	В.	
Com	monly	/ Obse	erved Responses:				
Cano	lidate	Α			Candidate B		
(a)	$\int_{-1}^{2} x$	$x^{2} + 2x$	$x + 3 - 2x^2 + x + 1 dx$	r	(a)	$\int_{-1}^{2} x^{2} + 2x + 3 - 2x^{2} + x + 1 dx$	
	$\int_{-1}^{\infty} ($	$-x^{2} + $	(x+2)dx	●1 ✓	(b)	$\int_{-1}^{\infty} \left(-x^2 + x + 2 \right) dx \qquad \bullet^1 \checkmark$	
Trea work	t miss ting is	ing br corre	ackets as bad forr ct.	n as subsequent	•1 awa	rded in part (b)	
Candidate C - error in simplification				ion			
(a) $\int_{-1}^{2} (x^2 + 2x + 3) - (2x^2 + x + 1) dx$ $\int_{-1}^{2} x^2 + x + 2 dx$ • ¹ ×							

Question		on	Generic scheme	Illustrative scheme	Max mark
	(b)		• ² integrate expression from (a)	• ² $-\frac{1}{3}x^3 + \frac{1}{2}x^2 + 2x$	3
			• ³ substitute limits	• ³ $\left(-\frac{1}{3}(2)^3+\frac{1}{2}(2)^2+2(2)\right)$	
				$-\left(-\frac{1}{3}(-1)^{3}+\frac{1}{2}(-1)^{2}+2(-1)\right)$	
			• ⁴ evaluate area	$\bullet^4 \frac{9}{2}$	

Notes:

5. Where a candidate differentiates one or more terms at \bullet^2 then \bullet^2 , \bullet^3 and \bullet^4 are unavailable.

6. Do not penalise the inclusion of +c or the continued appearance of the integral sign.

- 7. Candidates who substitute limits without integrating any term do not gain \bullet^3 or \bullet^4 .
- 8. Where a candidate arrives at a negative value at \bullet^4 see Candidates D and E.

Commonly Observed Responses:			
Candidate D		Candidate E	
Eg $\int_{-1}^{2} (x^2 - x - 2) dx$		$Eg \int_{2}^{-1} (-x^{2} + x + 2) dx$	
$=-\frac{9}{2}=\frac{9}{2}$	• ⁴ ×	$= -\frac{9}{2}$ cannot be negative so $\frac{9}{2}$ units ²	• ⁴ ¥
However = $-\frac{9}{2}$, hence area is $\frac{9}{2}$.	●4 ✓	However = $-\frac{9}{2}$, hence area is $\frac{9}{2}$.	●4 ✓
Candidate F - not using expression	from (a)		
(a) $\int_{-1}^{2} x^2 + 2x + 3 dx$	• ¹ x		
(b) $\int_{-1}^{2} (x^2 + 2x + 3) - (2x^2 + x + 1) dx$			
$= \left[-\frac{1}{3}x^{3} + \frac{1}{2}x^{2} + 2x \right]_{-1}^{2}$	•² <mark>✓ 2</mark>		
$= \left(-\frac{1}{3}(2)^{3} + \frac{1}{2}(2)^{2} + 2(2)\right)$			
$-\left(-\frac{1}{3}(-1)^{3}+\frac{1}{2}(-1)^{2}+2(-1)^{3}\right)$))•³ √ 1		
$=\frac{9}{2}$	• ⁴ 🖌 1		

Question		n	Generic scheme	Illustrative scheme	Max mark		
9.	(a)	(i)	• ¹ form an expression	• ¹ $p(2p+16)+(-2)(-3)+(4)(6)$	1		
		(ii)	• ² equate scalar product to 0	• ² $p(2p+16)+(-2)(-3)+(4)(6)=0$	3		
			• ³ factorise	• ³ $2(p+5)(p+3)$			
			• ⁴ state values of p	• ⁴ -5 and -3			
Note	s:						
1. Ev 2. Th 3. Fo 4. Do	 Evidence for •¹ may appear in part (a)(ii). The appearance of 'u · v = 0 ' alone is insufficient for •². For •² to be awarded '= 0' must appear at •² or •³. Do not penalise the absence of the common factor at •³. 						
Com	monly	0bse	erved Responses:				
Cand (i) p	$b = 2p^{2}$ $= p^{2} - p^{2}$	A -i +16)+ +16µ +8p+	ncorrect expression at \bullet^2 $-(-2)(-3)+(4)(6) \bullet^1 \checkmark$ a + 30 15	Candidate B - incorrect expression at • ² (i) $p(2p+16)+(-2)(-3)+(4)(6) •^{1} \checkmark$ $= 2p^{2}+16p+30$			
$= p^{2} + 8p + 15$ (ii) $p^{2} + 8p + 15 = 0$ $\bullet^{2} \times$ $(p+5)(p+3) = 0$ $\bullet^{3} \checkmark 1$ $p = -5, p = -3$ $\bullet^{4} \checkmark 1$			$ \begin{array}{c} $	(ii) $p^2 + 8p + 15 = 0$ (p+5)(p+3) = 0 p = -5, p = -3 $e^2 \times$ $e^3 \checkmark 1$ $e^4 \checkmark 1$			
Cand p(2) $2p^2$ 2(p)	lidate p + 16 + 16 p + 6)(p	C - in) + (-2) + 24 = 2 (2)	accorrect expression at \bullet^2 $2(-3)+(4)(6)$ $\bullet^1 \checkmark$ $= 0$ $\bullet^2 \times$ $\bullet^3 \checkmark 1$	Candidate D (i) $\mathbf{u}.\mathbf{v} = \begin{pmatrix} 2p^2 + 16p \\ 6 \\ 24 \end{pmatrix} \bullet^1 \mathbf{x}$			
<i>p</i> = -	- 6 , p =	=2	•4 🖌 1	(ii) $p(2p+16)+6+24=0$ • ² $2p^2+16p+30=0$			
				(p+5)(p+3)=0 • ³ ✓			
				p = -5, p = -3 • ⁴ ✓			

Q	uestion	Generic scheme	Illustrative scheme	Max mark		
	(b)	• ⁵ interpret relationship	• $3(p) = 2(2p+16)$ or $3\mathbf{u} = 2\mathbf{v}$ or equivalent	2		
		• ⁶ determine value of p	•6 -32			
Note	es:	•	•			
-						
Com	monly Obse	erved Responses:				
Cand	lidate E					
For p	parallel vec	tors $\theta = 0^{\circ}$				
Using	Using $\mathbf{u}.\mathbf{v} = \mathbf{u} \mathbf{v} \cos \theta$					
$p(2p+16) + (-2)(-3) + (4)(6) = \sqrt{p^2 + (-2)^2 + 4^2} \sqrt{(2p+16)^2 + (-3)^2 + 6^2} \qquad \bullet^5 \checkmark$						
$p^2 + 64p + 1024 = 0$						
p = -32						

Question		on	Generic scheme	Illustrative scheme	Max mark	
10.	(a)		• ¹ identify value of a	•1 3	1	
Note	s:					
Com	monly	/ Obse	erved Responses:			
	(b)		• ² identify value of k	• ² -2	1	
Note	s:					
Com	Commonly Observed Responses:					

Q	uestic	on	Generio	: scheme		Illustrative scheme	Max mark
11.			• ¹ start to integra	ite	•1	$\sin\left(3x-\frac{\pi}{6}\right)\dots$	4
			• ² complete integ	ration	•2	$\frac{1}{3}$ × $\frac{1}{3}$	
			• ³ substitute limit	:S	•3	$\frac{1}{3}\sin\left(3\times\frac{\pi}{9}-\frac{\pi}{6}\right)$	
						$-\left(\frac{1}{3}\sin\left(3\times0-\frac{\pi}{6}\right)\right)$	
			• ⁴ evaluate integr	al	•4	$\frac{1}{3}$	
Note	s:						
1. W	here o	andic	lates make no atter	mpt to integrate	or sta	rt to integrate individual terms	within the
br	acket	or us	e another invalid a	pproach eg sin	$3x-\frac{\pi}{6}$	$\int_{0}^{2} \operatorname{or} \left(\cos(3x) - \cos\left(\frac{\pi}{6}\right) dx \right) dx$, av	vard 0/4.
2. Do 3. Ca av	o not p andida ⁄ailabl	oenali ites w .e.	se the inclusion of ho work in degrees	+c' or the cont from the start c	tinued cannot	appearance of the integral sign gain \bullet^1 . However, \bullet^2 , \bullet^3 and \bullet^4 a	after ●¹. re still
4. ● ¹	may t	be aw	arded for the appe	arance of $\sin\left(3\right)$	$x-\frac{\pi}{6}$	in the first line of working, how	ever see
Ca 5. • ⁴ 6. W av	andida is onl here c railabl	ites B y avai candic e.	and D. Iable where candic Iates use a mixture	lates have consic of degrees and 1	dered l radian	ooth limits within a trigonometri s, • ³ is not awarded. However, •	c function. ⁴ is still
Com	monly	Obse	erved Responses:				
Cand	lidate	A - u	sing addition formu	ıla	Candi	date B - integrated over two line	es
$\int_{0}^{\frac{\pi}{9}} \left($	$\cos 3x$	$\cos\frac{\pi}{6}$	$+\sin 3x\sin\frac{\pi}{6}dx$		$\int_{0}^{\frac{\pi}{9}} \left(c \right)^{\frac{\pi}{9}} \left(c \right)^{\pi$	$\cos\left(3x-\frac{\pi}{6}\right)dx$	
$\left =\frac{1}{3}s\right $	in 3x>	$<\frac{\sqrt{3}}{2}$.		•1 🗸	$=\sin\left($	$\left(3x-\frac{\pi}{6}\right)$ • ¹	√
			$-\frac{1}{3}\cos 3x \times \frac{1}{2}$	•2 🗸	$=\frac{1}{3}\sin^{2}$	$n\left(3x-\frac{\pi}{6}\right)$ \bullet^2	×
Cand	lidate	C - in	tegrated in part		Candi	date D - integrated in part	
3 sin	$\int 3x -$	$\left(\frac{\pi}{6}\right)$	5	•1 ✓ •2 ≭	$-\frac{1}{3}$ sir	$n\left(3x-\frac{\pi}{6}\right)$ • ¹	x • ² ✓
3 sin	$\left(3\times\frac{\pi}{9}\right)$	$\left(-\frac{\pi}{6}\right)$	$-3\sin\left(0-\frac{\pi}{6}\right)$	• ³ ✓ 1	$-\frac{1}{3}$ sir	$n\left(3\times\frac{\pi}{9}-\frac{\pi}{6}\right)+\frac{1}{3}\sin\left(0-\frac{\pi}{6}\right)$ • ³	✓ 1
3				•4 🖌 1	$\frac{1}{3}$	•4	√ 1

Question		on	Generic scheme	Illustrative scheme	Max mark	
12.	(a)		• ¹ interpret notation	•1 $f(5-x)$ or $\frac{1}{\sqrt{g(x)}}$	2	
			• ² state expression for $f(g(x))$	• ² $\frac{1}{\sqrt{5-x}}$		
Note	s:					
1. Fo	or $\frac{7}{\sqrt{5}}$	$\frac{1}{-x}$ w	rithout working, award both ●1 and	• ² .		
Com	monly	/ Obse	erved Responses:			
Cand	lidate	Α				
5 \	$\frac{1}{\sqrt{x}}$		• ¹ x • ² / 1			
	(b)		• ³ state range	• ³ $x \ge 5$	1	
Note	s:					
2. Aı	nswer	at • ³	must be consistent with expression a	t ● ² .		
3. Fo	3. For candidates who interpret $g(f(x))$ as $f(g(x))$, do not award \bullet^3 .					
Com	Commonly Observed Responses:					
Cano	lidate	В				
5 \	$\frac{1}{\sqrt{x}}$		• ¹ x • ² √ 1			
$ x \leq 0$)		• ³ ¥			

Question		n	Generic scheme	Illustrative scheme	Max mark		
14.	(a)		•1 apply $m \log_n x = \log_n x^m$	• ¹ $\log_{10} 5^2$ stated or implied by • ²	3		
			• ² apply $\log_a x + \log_a y = \log_a xy$	• ² $\log_{10}(4 \times 5^2)$			
			• ³ evaluate logarithm	• ³ 2			
Note	s:						
1. Ea Ca 2. Do 3. Co	 Each line of working must be equivalent to the line above within a valid strategy, however see Candidate A. Do not penalise the omission of the base of the logarithm at •1 or •2. Correct answer with no working, award 0/3. 						
Com	monly	[,] Obse	rved Responses:				
Cand	lidate	A					
2 log	, (4×	5)	•2 🗴				
2 log	₁₀ (20)					
log ₁₀	(20) ²		•1 <u>1</u> •3 ^				

Questio	'n	Generic scheme		Illustrative scheme	Max mar	x 'k
(b)		Method 1		Method 1	3	
		•4 apply $\log_a x - \log_a y = \log_a \frac{x}{y}$		• $\log_2 \frac{7x-2}{3} = \dots$		
		• ⁵ express in exponential form		• $5 \frac{7x-2}{3} = 2^5$		
		• ⁶ solve for x		•6 14		
		Method 2		Method 2		
		•4 apply $m \log_n x = \log_n x^m$		• ⁴ = $\log_2 2^5$		
		● ⁵ simplify		• ⁵ eg $\log_2 \frac{7x-2}{2} = \dots$ or		
				$\log_2(7x-2) = \log_2(3 \times 2^5)$		
		• ⁶ solve for x		• ⁶ 14		
Notes:					·	
4. ● ⁶ is only	y awa	rded if each line of working is equ	ivale	nt to the line above within a valio	d strategy.	
Commonly	Obse	rved Responses:				
Candidate	A - in	valid working leading to solution	Can	didate B - invalid working leading	g to solutior	n
$\log_2 \frac{7x-2}{3}$	= log	• ² 5 ² • ⁴ ✓ • ⁵ ≭	log	$2\frac{7x-2}{3} = \log_2 5 \times 2$	•4 ✓ •5 ≭	
x = 11		• ⁶ <mark>✓ 2</mark>	<i>x</i> =	<u>32</u> 7	•6 🖌 2	
Candidate	С		Can	didate D		
$\log_2\left(\frac{7x-2}{2}\right)$	$\frac{2}{2} = 5$	5log₂ 2 ● ⁵ ✓	log	$(7x-2) - \log_2 3 = \log_2 2^5$	∮4 ✓	
$\begin{vmatrix} 0 & 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$) -= log	$s_2 2^5 \bullet^4 \checkmark$	log	$\left(\frac{7x-2}{3}\right) = \log_2 25$	•5 ✓	

Q	uestic	on	Generic scheme		Illustrative scheme		Max mark
15.	(a)		•1 substitute appropriate double angle formula		• ¹ $2\sin x^{\circ}\cos x^{\circ} + 6\cos x^{\circ} = 0$		4
			• ² factorise		• ² $2\cos x^{\circ}(\sin x^{\circ}+3)=0$		
			• ³ solve for $\cos x^\circ$ and $\sin x^\circ$		• ³ $\cos x^{\circ} = 0$ $\sin x^{\circ} = -3$		
			• ⁴ solve for x		•4 $x = 90, 270$ 'no solutions'		
Note	s:						
1. Do 2. Do 3. Do 4. Ca m 5. • ⁴ 6. Ao	 Do not penalise the absence of '=0' at •¹ and •². Do not penalise the absence of '2' as a common factor at •². Do not penalise the omission of degree signs. Candidates who leave their answer in radians do not gain •⁴ (if marking horizontally) or •³ (if marking vertically). •⁴ is only available if one of the equations at •³ has no solution. Accept since -3 at •⁴. 						
Com	monty	UDSE	erved Responses:				
Canc	lidate	A x _ 6	2005 r1 -(Can	didate B - insufficient evidence f	or ● ³	
$2 \sin 2 \sin 2$	x = -0	λ — —υ 6	$-2 \wedge -3 \wedge$	2 51	$\int \frac{1}{x} \cos x + \theta \cos x = 0$	2	
sin	-3		•4 🗸 1	200	SS x (SIII x + 3) = 0	3	4
					$sx^{2} = 0$, $sin x^{2} = -3$	•••••)4 /
				x =	90, 270, 'no solutions'	• ³ 🗸 •	,4 ✓
	(b)		• ⁵ state solutions		• ⁵ 45, 135, 225,315		1
Note	s:	1					
Com	monly	v Obse	erved Responses:				

Q	uestic	n	Generic scheme	Illustrative scheme	Max mark	
16.	(a)		• ¹ identify centre	•1 (1, -2) stated or implied by \bullet^2	2	
			• ² apply distance formula and demonstrate result	• ² $\sqrt{(4-1)^2 + (k-(-2))^2}$ leading to $\sqrt{k^2 + 4k + 13}$		
Note	s:			-		
1. Be	eware	of ca	ndidates who 'fudge' their working be	tween \bullet^1 and \bullet^2 .		
Com	monly	0bse	erved Responses:			
	(b)		• ³ interpret information	$\bullet^3 \sqrt{k^2 + 4k + 13} > 5$	4	
			• ⁴ express inequality in standard quadratic form	• $k^2 + 4k - 12 > 0$		
			• ⁵ determine zeros of quadratic expression	• ⁵ 6, 2		
			• ⁶ state range with justification	• $k < -6, k > 2$ with eg sketch or table of signs		
Note	s:					
 Where a candidate has used an incorrect expression from part (a), •³ is not available. However, •⁴, •⁵ and •⁶ are still available for dealing with an expression of equivalent difficulty. Candidates who do not work with an inequation from the outset lose •³, •⁴ and •⁶. However, •⁵ is still available. See Candidate A. 						
Com	Commonly Observed Responses:					
Canc	Candidate A $\sqrt{L^2 + 4L + 12}$ F					
$\begin{vmatrix} \sqrt{k} + 4k + 15 = 5 \\ k^2 + 4k - 12 = 0 \end{vmatrix} \qquad e^4 \times$						
k = -	$k + 4k - 12 = 0$ $k = -6, k = 2$ $\bullet^{5} \checkmark$					
For F	to lie	e outs	ide the circle			
k < -	- 6 , <i>k</i> >	> 2	• ⁶ ×			

Question		on	Generic scheme	Illustrative scheme	Max mark
17.	(a)		• ¹ expand brackets	• $\sin^2 x - \sin x \cos x$ $-\sin x \cos x + \cos^2 x$	3
			$ullet^2$ use double angle formula for sin	• ² sin 2x	
			• ³ use trigonometric identity and express in required form	• ³ $1-\sin 2x$	
Note	s:	1			1
1. Fc	or corr	rect ai	nswer with no working award 0/3.		
Com	monly	v Obse	erved Responses:		
Cand	lidate	A - in	correct notation		
$\sin x$	$^{2} - 2 s^{2}$	in x co	$sx + cosx^2$ $\bullet^1 x$		
1-si	n 2 <i>x</i>		● ² ✓ ● ³ ¥		
	(b)		• ⁴ link to (a) and integrate one ter	m •4 eg $\int (1-\sin 2x) dx = x$	2
			• ⁵ complete integration	• ⁵ $x + \frac{1}{2}\cos 2x + c$	
Note	s:	•		•	•
2. • ⁴ and • ⁵ can only be awarded if the integrand is of the form $p + q \sin rx$. 3. Where the statement for • ³ appears with no relevant working, • ⁴ and • ⁵ are not available.					
Com	monly	0bse	erved Responses:		

[END OF MARKING INSTRUCTIONS]