

2017 Mathematics Paper 2

Higher

Finalised Marking Instructions

 $\ensuremath{\mathbb{C}}$ Scottish Qualifications Authority 2017

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is reproduced, SQA should be clearly acknowledged as the source. If it is to be used for any other purpose, written permission must be obtained from permissions@sqa.org.uk.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments. This publication must not be reproduced for commercial or trade purposes.

Q	Question		Generic scheme	Illustrative scheme	Max mark		
1.	(a)		• ¹ find mid-point of BC	• ¹ (6,-1)			
			• ² calculate gradient of BC	• ² $-\frac{2}{6}$			
			• ³ use property of perpendicular lines	• ³ 3			
			• ⁴ determine equation of line in a simplified form	•4 $y = 3x - 19$	4		
Note	Notes:						
2. T fo	 •⁴ is only available as a consequence of using a perpendicular gradient and a midpoint. The gradient of the perpendicular bisector must appear in simplified form at •³ or •⁴ stage for •³ to be awarded. At •⁴, accept 3x-y-19=0, 3x-y=19 or any other rearrangement of the equation where 						

3. At •⁴, accept 3x - y - 19 = 0, 3x - y = 19 or any other rearrangement of the equation where the constant terms have been simplified.

Commonly Observed Responses:

Question	Generic scheme	Illustrative scheme	Max mark			
1. (b)	• ⁵ use $m = \tan \theta$	• ⁵ 1				
	• ⁶ determine equation of AB	• ⁶ $y = x - 3$	2			
Notes:						

4. At \bullet^6 , accept y - x + 3 = 0, y - x = -3 or any other rearrangement of the equation where the constant terms have been simplified.

Question	Generic scheme	Illustrative scheme	Max mark
1. (c)	• ⁷ find x or y coordinate	• ⁷ $x = 8$ or $y = 5$	
	• ⁸ find remaining coordinate	• ⁸ $y = 5$ or $x = 8$	2
Notes:			
Commonly Obs	served Responses:		

Q	uestic	on	Generic scheme	Illustrative scheme	Max mark
2.	(a)		Method 1	Method 1	
			 ¹ know to use x=1 in synthetic division 	$ \begin{array}{c cccccccccccccccccccccccccccccccccc$	
			• ² complete division, interpret result and state conclusion	• ² 1 $\begin{vmatrix} 2 & -5 & 1 & 2 \\ 2 & -3 & -2 \\ \hline 2 & -3 & -2 & 0 \\ Remainder = 0 \therefore (x-1) \text{ is a factor} \end{vmatrix}$	2
			Method 2	Method 2	
			• ¹ know to substitute $x = 1$	• $1^{2}(1)^{3} - 5(1)^{2} + (1) + 2$	
			• ² complete evaluation, interpret result and state conclusion	• ² = 0 $\therefore (x-1)$ is a factor	2
			Method 3	Method 3	
			 ¹ start long division and find leading term in quotient 	• ¹ $2x^2$ (x-1) $2x^3 - 5x^2 + x + 2$	
			• ² complete division, interpret result and state conclusion	• ² $\frac{2x^{2} - 3x - 2}{(x - 1) \sqrt{2x^{3} - 5x^{2} + x + 2}}$ $\frac{2x^{3} - 2x^{2}}{-3x^{2} + x}$ $\frac{-3x^{2} + 3x}{-2x + 2}$ $\frac{-2x + 2}{0}$ remainder = 0 \therefore (x-1) is a factor	
					2

Question	Generic scheme	Illustrative scheme	Max mark			
Notes:						
 Communication at •² must be consistent with working at that stage i.e. a candidate's working must arrive legitimately at 0 before •² can be awarded. Accept any of the following for •²: 'f(1)=0 so (x-1) is a factor' 'since remainder = 0, it is a factor' the 0 from any method linked to the word 'factor' by e.g. 'so', 'hence', '', '→', '⇒' 						
• doul • ' <i>x</i> = · (<i>x</i> ·	pt any of the following for \bullet^2 : ble underlining the zero or boxing the x = -1 is a factor', $(x+1)$ is a factor', (x-1) is a root' $x = -1$ is a root'. word 'factor' only with no link					

Commonly Observed Responses:

Q	uestio	n Generic scheme		Illustrative scheme	Max mark
2.	(b)		• ³ state quadratic factor	• 3 $2x^{2}-3x-2$	
			• ⁴ find remaining factors	• ⁴ (2x+1) and (x-2)	
			$ullet^5$ state solution	• ⁵ $x = -\frac{1}{2}$, 1, 2	3

Notes:

- 4. The appearance of "=0" is not required for \bullet^5 to be awarded.
- 5. Candidates who identify a different initial factor and subsequent quadratic factor can gain all available marks.
- 6. \bullet^5 is only available as a result of a valid strategy at \bullet^3 and \bullet^4 .

7. Accept
$$\left(-\frac{1}{2},0\right)$$
, $(1,0)$, $(2,0)$ for \bullet^{5}

Q	uestion	Generic scheme	Illustrative scheme	Max mark		
3.		• ¹ substitute for <i>y</i>	• ¹ $(x-2)^2 + (3x-1)^2 = 25$ or $x^2 - 4x + 4 + (3x)^2 - 2(3x) + 1 = 25$			
		• ² express in standard quadratic form	• ² $10x^2 - 10x - 20 = 0$			
		• ³ factorise	• ³ $10(x-2)(x+1)=0$			
		• ⁴ find x coordinates	• ⁴ $x = 2$ $x = -1$			
		• ⁵ find y coordinates	• ⁵ $y = 6$ $y = -3$	5		
Note	es:					
a 4. A tl 5. • 6. • 7. F	 2. •² is only available if '= 0' appears at •² or •³ stage. 3. If a candidate arrives at an equation which is not a quadratic at •² stage, then •³, •⁴ and •⁵ are not available 4. At •³ do not penalise candidates who fail to extract the common factor or who have divided the quadratic equation by 10. 5. •³ is available for substituting correctly into the quadratic formula. 6. •⁴ and •⁵ may be marked either horizontally or vertically. 7. For candidates who identify both solutions by inspection, full marks may be awarded provided they justify that their points lie on both the line and the circle. Candidates who identify both solutions, but justify only one gain 2 out of 5. 					
Com	monly Obs	erved Responses:				
$(x-10x^2$	Candidate ACandidate B $(x-2)^2 + (3x-1)^2 = 25$ •1 ✓Candidates who substitute into the circle equation only •1 ✓ $10x^2 - 10x = 20$ •2 ו2 ✓ $10x(x-1) = 20$ •3 ✓2•3 ✓ $x = 2$ $x = 3$ •4 × $x = 2$ $x = 3$ •4 × $(y-6)(y+4) = 0$ $(y+3)(y-5) = 0$					
y = 0	6 y = 9		y = 6 or y = -3 or y = -3 (2,6) (-1,-3) • ⁵ ×			

Q	Question		Ge	neric scheme	Illustrative scheme	Max mark
4.	(a)			Method 1	Method 1	
			• ¹ identify	common factor	• $3(x^2 + 8x$ stated or implied by • ²	
			• ² complete	e the square	• ² $3(x+4)^2$	
			• ³ process f required	for <i>c</i> and write in form	• $3(x+4)^2+2$	3
				Method 2	Method 2	
			• ¹ expand o	completed square for	$\bullet^1 ax^2 + 2abx + ab^2 + c$	
			• ² equate c	coefficients	• ² $a=3$, $2ab=24$, $ab^2+c=50$	
			• ³ process t in requir	for b and c and write ed form	$e^{3} 3(x+4)^{2}+2$	3
Note	es:					L
2. •	•	nly av			nly; however, see Candidate G. both multiplication and subtraction of	
			erved Respo	onses:		
Can	didate	e A			Candidate B	
$3 x^2$	² + 8 <i>x</i>	$+\frac{50}{3}$		•1 🗸	$3x^2 + 24x + 50 = 3(x+8)^2 - 64 + 50 \bullet^1$	x • ² x
		•)	$-16+\frac{50}{3}$		$=3(x+8)^2-14$ • ³	√2
			3) • ² ^	further working is required		
Can	didate	e C			Candidate D	
ax^2 -	+ 2 abx	$a + ab^2$	+ <i>c</i>	• ¹ 🗸	$3((x^2+24x)+50)$ • ¹	×
	·	b = 24	$b^2 + c = 50$	• ² ¥		√ 1
	$(+4)^2$,	— J T	● ³ √ 1		√ 1

Question	Generic scheme	Illustrative scheme Max mark		
a=3, 2ab=24 b=4, c=2 \bullet^3 is awa working	$x^{2} + 2abx + ab^{2} + c \qquad \bullet^{1} \checkmark$ $ab^{2} + c = 50 \qquad \bullet^{2} \checkmark$ $\bullet^{3} \checkmark$ arded as all relates to relates to relates to relates to	Candidate F $ax^2 + 2abx + ab^2 + c$ $\bullet^1 \checkmark$ $a = 3, \ 2ab = 24, \ ab^2 + c = 50$ $\bullet^2 \checkmark$ $b = 4, \ c = 2$ $\bullet^3 \times$ \bullet^3 is lost as no reference is made to completed square form		
	3x+16)+2 24x+48+2 24x+50	Candidate H $3x^2 + 24x + 50$ $= 3(x+4)^2 - 16 + 50$ $\bullet^1 \checkmark \bullet^2 \checkmark$ $= 3(x+4)^2 + 34$ $\bullet^3 \bigstar$		
Award 3/3				

Q	Question		Generic scheme	Illustrative scheme	Max mark			
4.	(b)		• ⁴ differentiate two terms	• $3x^2 + 24x$				
			• ⁵ complete differentiation	• ⁵ +50	2			
Note	es:	1			I			
3. •	3. • ⁴ is awarded for any two of the following three terms: $3x^2$, $+24x$, $+50$							
Com	Commonly Observed Responses:							

Q	uestio	on	Generic scheme	Illustrative scheme	Max mark	
4.	(c)		Method 1	Method 1		
			• ⁶ link with (a) and identify sign of $(x+4)^2$	• ⁶ $f'(x) = 3(x+4)^2 + 2$ and $(x+4)^2 \ge 0 \forall x$		
			• ⁷ communicate reason	• ⁷ $\therefore 3(x+4)^2 + 2 > 0 \Rightarrow$ always strictly increasing		
			Method 2	Method 2		
			• ⁶ identify minimum value of $f'(x)$	• ⁶ eg minimum value =2 or annotated sketch		
			• ⁷ communicate reason	• ⁷ $2 > 0 \therefore (f'(x) > 0) \Rightarrow$ always strictly increasing	2	
Note	<u>.</u>				2	
		pena	lise $(x+4)^2 > 0$ or the omission of	$f'(x)$ at \bullet^6 in Method 1		
5. R 6. W 51 7. A 51	espor vailat /here trictly t • ⁶ c tatem vailat	nses ir ole. error incre ommu nents ole.	In part (c) must be consistent with version of a candidate easing, only \bullet^6 is available. Unication should be explicitly in terms such as "(something) ² \geq 0", "some	working in parts (a) and (b) for \bullet^6 and considering a function which is not alter rms of the given function. Do not accest thing squared ≥ 0 ". However, \bullet^7 is st	ways	
			served Responses:			
	didate $r = 3$			Candidate J		
- ($f'(x) = 3(x+4)^2 + 2$			Since $3x^2 + 24x + 50 = 3(x+4)^2 + \frac{166}{50}$		
	$3(x+4)^2+2>0 \Rightarrow$ strictly increasing. Award 1 out of 2			and $(x+4)^2$ is >0 for all x then		
				$3(x+4)^2 + \frac{166}{50} > 0$ for all x.		
			H V	Hence the curve is strictly increasing values of x . •6 \checkmark •7 \checkmark 1	g for all	

Question		Question Generic scheme		Illustrative scheme	Max mark		
5.	(a)		• ¹ identify pathway	• ¹ $\overrightarrow{PR} + \overrightarrow{RQ}$ stated or implied by • ²			
			• ² state \overrightarrow{PQ}	• ² $-3i-4j+5k$	2		
Not	Notes:						

1. Award \bullet^1 (9i+5j+2k)+(-12i-9j+3k).

2. Candidates who choose to work with column vectors and leave their answer in the form $\begin{pmatrix} -3 \end{pmatrix}$

 $\begin{bmatrix} -4 \\ 5 \end{bmatrix}$ cannot gain \bullet^2 .

- 3. \bullet^2 is not available for simply adding or subtracting vectors within an invalid strategy.
- 4. Where candidates choose specific points consistent with the given vectors, only \bullet^1 and \bullet^4 are available. However, should the statement 'without loss of generality' precede the selected points then marks \bullet^1 , \bullet^2 , \bullet^3 and \bullet^4 are all available.

Q	Question		Generic scheme	Illustrative scheme	Max mark	
5.	(b)		• ³ interpret ratio	• ³ $\frac{2}{3}$ or $\frac{1}{3}$		
			• ⁴ identify pathway and demonstrate result	• ⁴ $\overrightarrow{PR} + \frac{2}{3}\overrightarrow{RQ}$ or $\overrightarrow{PQ} + \frac{1}{3}\overrightarrow{QR}$ leading		
				to i-j+4 k	2	
Note	es:					
5. This is a 'show that' question. Candidates who choose to work with column vectors must write their final answer in the required form to gain \bullet^4 . $\begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix}$ does not gain \bullet^4 .						
6.	6. Beware of candidates who fudge their working between \bullet^3 and \bullet^4 .					

Question	Generic scheme		Illustrative scheme	Max mark
Commonly Obse	erved Responses:			
Candidate A - I formula $\overrightarrow{PS} = \frac{n\overrightarrow{PQ} + m\overrightarrow{PR}}{m+n}$ $\overrightarrow{PS} = \frac{2\overrightarrow{PQ} + \overrightarrow{PR}}{3} \bullet$ $2 \begin{pmatrix} -3 \\ -4 \\ 5 \end{pmatrix} + \begin{pmatrix} 9 \\ 5 \\ 2 \end{pmatrix}$ $\overrightarrow{PS} = \frac{2 \begin{pmatrix} -3 \\ -4 \\ 5 \end{pmatrix}}{3} + \begin{pmatrix} 9 \\ 5 \\ 2 \end{pmatrix}$ $= \begin{pmatrix} -2 \\ -8 \\ 3 \\ 10 \\ 3 \end{pmatrix} + \begin{pmatrix} 3 \\ 5 \\ 3 \\ 2 \\ 3 \end{pmatrix}$ $= \begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix}$ $\overrightarrow{PS} = \mathbf{i} - \mathbf{j} + 4\mathbf{k} \bullet^{4}$		origi 2QS 3s = 2 3s = 2		as the

Q	Question		Generic scheme	Illustrative scheme	Max mark
5.	(c)		Method 1	Method 1	
			● ⁵ evaluate PQ.PS	• ⁵ $\overrightarrow{PQ}.\overrightarrow{PS} = 21$	
			• ⁶ evaluate \overrightarrow{PQ}	• ⁶ $\left \overline{PQ} \right = \sqrt{50}$ • ⁷ $\left \overline{PS} \right = \sqrt{18}$	
			• ⁷ evaluate \overline{PS}	• ⁷ $\left \overrightarrow{PS} \right = \sqrt{18}$	
			• ⁸ use scalar product	• ⁸ cos QPS = $\frac{21}{\sqrt{50} \times \sqrt{18}}$	
			• ⁹ calculate angle	•9 $45 \cdot 6^{\circ}$ or $0 \cdot 795$ radians	5
			Method 2	Method 2	
			• ⁵ evaluate \overline{QS}	• ⁵ $\left \overrightarrow{QS} \right = \sqrt{26}$	
			• ⁶ evaluate \overline{PQ}	• ⁵ $\left \overline{QS} \right = \sqrt{26}$ • ⁶ $\left \overline{PQ} \right = \sqrt{50}$	
			\bullet^7 evaluate \overline{PS}	• ⁷ $\left \overrightarrow{PS} \right = \sqrt{18}$	
			• ⁸ use cosine rule	• ⁸ cosQPS = $\frac{(\sqrt{50})^2 + (\sqrt{18})^2 - (\sqrt{26})^2}{2 \times \sqrt{50} \times \sqrt{18}}$	
Note			• ⁹ calculate angle	● ⁹ 45·6° or 0·795 radians	5

7. For candidates who use \overrightarrow{PS} not equal to $\mathbf{i} - \mathbf{j} + 4\mathbf{k} \bullet^5$ is not available in Method 1 or \bullet^7 in Method 2.

- 8. Do not penalise candidates who treat negative signs with a lack of rigour when calculating a magnitude. However, $\sqrt{1^2 1^2 + 4^2}$ leading to $\sqrt{16}$ indicates an invalid method for calculating the magnitude. No mark can be awarded for any magnitude arrived at using an invalid method.
- 9. •⁸ is not available to candidates who simply state the formula $\cos\theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}$.

However,
$$\cos\theta = \frac{\overrightarrow{PQ}.\overrightarrow{PS}}{|\overrightarrow{PQ}| \times |\overrightarrow{PS}|}$$
 or $\cos\theta = \frac{21}{\sqrt{50} \times \sqrt{18}}$ is acceptable. Similarly for Method 2.

- 10. Accept answers which round to 46° or 0.8 radians.
- 11. Do not penalise the omission or incorrect use of units.
- 12. \bullet^9 is only available as a result of using a valid strategy.
- 13. \bullet^9 is only available for a single angle.
- 14. For a correct answer with no working award 0/5.

Question	Generic scheme	Illustrative scheme Max mark
Commonly Obs	erved Responses:	
Candidate C - C	Calculating wrong angle	Candidate D- Calculating wrong angle
$\overrightarrow{QP}.\overrightarrow{QS} = 29$	• ⁵ x	$\overrightarrow{PS}.\overrightarrow{QP} = -21$ $\bullet^5 \times$
$\left \overrightarrow{\text{QP}} \right = \sqrt{50}$	● ⁶ <mark>√1</mark>	$\left \overline{\text{QP}}\right = \sqrt{50}$ $\bullet^6 \checkmark$
$\left \overline{\text{QS}} \right = \sqrt{26}$		$\left \overline{PS}\right = \sqrt{18}$ $\bullet^7 \checkmark$
$\cos P\hat{Q}S = \frac{29}{\sqrt{50} \times \sqrt{50}}$	• ⁸ √ 1	$\cos \theta = \frac{-21}{\sqrt{50} \times \sqrt{18}} \qquad \bullet^8 \checkmark 1$ $\theta = 134 \cdot 4 \qquad \bullet^9 \checkmark \text{ strategy}$
	● ⁹ ★ strategy incomplete	$\theta = 134 \cdot 4$ •9 * strategy incomplete
	who continue, and use the evaluate the required angle, are available.	For candidates who continue, and use the angle found to evaluate the required angle, then all marks are available.
Candidate E		Candidate F
From (a) $\overrightarrow{PQ} = -$	21i-14j+k	From (a) $\overrightarrow{PQ} = 21i + 14j - k$
$\overrightarrow{PQ}.\overrightarrow{PS} = -3$	● ⁵ √ 1	$\overrightarrow{PQ}.\overrightarrow{PS} = 3$ $\bullet^5 \checkmark 1$
$\overrightarrow{PQ}.\overrightarrow{PS} = -3$ $\left \overrightarrow{PQ}\right = \sqrt{638}$ $\left \overrightarrow{PS}\right = \sqrt{18}$	● ⁶ <mark>√1</mark>	$\left \overline{PQ}\right = \sqrt{638}$ $\bullet^{6} \checkmark 1$
$\left \overrightarrow{PS} \right = \sqrt{18}$	•7 🗸	$\overrightarrow{PQ}.\overrightarrow{PS} = 3 \qquad \bullet^{5} \checkmark 1$ $\left \overrightarrow{PQ}\right = \sqrt{638} \qquad \bullet^{6} \checkmark 1$ $\left \overrightarrow{PS}\right = \sqrt{18} \qquad \bullet^{7} \checkmark$
$\cos Q\hat{P}S = \frac{-3}{\sqrt{638}} \times$		$\cos Q\hat{P}S = \frac{3}{\sqrt{638} \times \sqrt{18}} \bullet^8 \checkmark 1$
QPS = 91⋅6	• ⁹ 1	$Q\hat{P}S = 88 \cdot 4$ •9 $\checkmark 1$
Candidate G		
From (b) $\overrightarrow{PS} = -4$	4i-3j+k	
$\overrightarrow{PQ}.\overrightarrow{PS} = 3$	• ⁵ ×	
	•6 🗸	
$\left \overrightarrow{PS} \right = \sqrt{26}$	• ⁷ 1	
$\begin{vmatrix} \overline{PS} = \sqrt{26} \\ \cos Q\hat{PS} = \frac{3}{\sqrt{50} \times \sqrt{20}} \end{vmatrix}$	• ⁸ √ 1	
$Q\hat{P}S = 85 \cdot 2$	• ⁹ √ 1	

Q	uestion	Generic scheme	Illustrative scheme	Max mark
6.		• ¹ substitute appropriate double angle formula	• ¹ $5\sin x - 4 = 2(1 - 2\sin^2 x)$	
		• ² express in standard quadratic form	• ² $4\sin^2 x + 5\sin x - 6 = 0$	
		• ³ factorise	• ³ $(4\sin x - 3)(\sin x + 2)$	
		• ⁴ solve for $\sin x^{\circ}$	• ⁴ $\sin x = \frac{3}{4}$, $\sin x = -2$	
		• ⁵ solve for x	• ⁵ $x = 0.848, 2.29, \sin x = -2$	5
Note	es:			

1. •¹ is not available for simply stating $\cos 2x = 1 - 2\sin^2 x$ with no further working.

2. In the event of $\cos^2 x^\circ - \sin^2 x^\circ$ or $2\cos^2 x^\circ - 1$ being substituted for $\cos 2x$, \bullet^1 cannot be awarded until the equation reduces to a quadratic in $\sin x^\circ$.

3. Substituting $1-2\sin^2 A$ or $1-2\sin^2 \alpha$ for $\cos 2x$ at \bullet^1 stage should be treated as bad form provided the equation is written in terms of x at \bullet^2 stage. Otherwise, \bullet^1 is not available.

- 4. '=0' must appear by \bullet^3 stage for \bullet^2 to be awarded. However, for candidates using the quadratic formula to solve the equation, '=0' must appear at \bullet^2 stage for \bullet^2 to be awarded.
- 5. $5\sin x + 4\sin^2 x 6 = 0$ does not gain \bullet^2 unless \bullet^3 is awarded.

6.
$$\sin x = \frac{-5 \pm \sqrt{121}}{8}$$
 gains •³.

- 7. Candidates may express the equation obtained at \bullet^2 in the form $4s^2+5s-6=0$ or $4x^2+5x-6=0$. In these cases, award \bullet^3 for (4s-3)(s+2)=0 or (4x-3)(x+2)=0. However, \bullet^4 is only available if $\sin x$ appears explicitly at this stage.
- 8. \bullet^4 and \bullet^5 are only available as a consequence of solving a quadratic equation.
- 9. •³, •⁴ and •⁵ are not available for any attempt to solve a quadratic equation written in the form $ax^2 + bx = c$.
- 10. ●⁵ is not available to candidates who work in degrees and do not convert their solutions into radian measure.
- 11. Accept answers which round to 0.85 and 2.3 at $\bullet^5 \text{ eg} \frac{49\pi}{180}, \frac{131\pi}{180}$
- 12. Answers written as decimals should be rounded to no fewer than 2 significant figures.
- 13. Do not penalise additional solutions at \bullet^5 .

Question	Generic s	scheme	Illustrative schem	ne Max mark
Commonly Obs Candidate A	served Responses:		Candidate B	
• ¹ • • ² • (4s-3)(s+2) = $s = \frac{3}{4}, s = -2$ x = 0.848, 2.22	•4 ¥		• ¹ $4\sin^2 x + 5\sin x - 6 = 0$ $9\sin x - 6 = 0$ $\sin x = \frac{2}{3}$ x = 0.730, 2.41	$ \begin{array}{c} \bullet^{2} \checkmark \\ \bullet^{3} \varkappa \\ \bullet^{4} \checkmark \\ \bullet^{5} \checkmark \\ \end{array} $
Candidate C $5\sin x - 4 = 2(1 + 3) + 5\sin x$ $\sin x(4\sin x + 5) + 5\sin x$ $\sin x = 6, 4\sin x$ no solution, sin	x = 6 x = 6 x + 5 = 6 $x = \frac{1}{4}$	• ¹ ✓ • ² ✓ 2 • ³ ✓ 2 • ⁴ ★	Candidate D $5\sin x - 4 = 2(1 - 2\sin^2 x)$ $4\sin^2 x + 5\sin x - 6 = 0$ $4\sin^2 x + 5\sin x = 6$ $\sin x (4\sin x + 5) = 6$ $\sin x = 6, 4\sin x + 5 = 6$ no solution, $\sin x = \frac{1}{4}$	• ¹ ✓ • ² ✓ • ³ ✓ <u>2</u> • ⁴ ≭
x = 0.253, 2.8	9	• ⁵ ×	x = 0.253, 2.89	● ⁵ ≭
	reading $\cos 2x$ as $\cos^2 x$			
$5\sin x - 4 = 2\cos x - 4 = 2(1)$ $2\sin^2 x + 5\sin x - 4 = 2(1)$ $\sin x = \frac{-5 \pm \sqrt{7}}{4}$ $\sin x = 0.886,$ $x = 1.08, 2.05$	$(-\sin^2 x)$ (-6 = 0) (-6 = 0)	• ¹ x • ² $\sqrt{1}$ • ³ $\sqrt{1}$ • ⁴ $\sqrt{1}$ • ⁵ $\sqrt{1}$		

Q	uesti	on	Generic scheme		Illustrative scheme	Max mark
7.	(a)		• ¹ write in differentiable form	•1	$\dots -2x^{\frac{3}{2}}$ stated or implied	
			• ² differentiate one term	•2	$\frac{dy}{dx} = 6 \text{ or } \frac{dy}{dx} = 3x^{\frac{1}{2}}$	
			• ³ complete differentiation and equate to zero	• 3	$\dots -3x^{\frac{1}{2}} = 0$ or $6\dots = 0$	
			• ⁴ solve for x	•4	<i>x</i> = 4	4
3. F			tes who integrate one or other of t served Responses:	the te	rms • ⁴ is unavailable.	
			•	Candi	date B - integrating the second t	orm
	6x-2	3	• ¹ ✓	y = 6	$x-2x^{\frac{3}{2}}$ $\bullet^1\checkmark$.crm
$\frac{dy}{l} =$	=6-3	$3x^{\frac{5}{2}}$			$5 - \frac{4}{5}x^{\frac{5}{2}} \qquad \bullet^2 \checkmark$	
	$3x^{\frac{5}{2}} =$		• ³ ×	$6 - \frac{4}{5}$	$x^{\frac{5}{2}} = 0$ $\bullet^3 x$	
<i>x</i> = ²	1.32		• ⁴ 1	x = 2	•24 • ⁴ x	

Q	Question		Generic scheme	Illustrative scheme	Max mark		
7.	(b)		 •⁵ evaluate y at stationary point •⁶ consider value of y at end points •⁷ state greatest and least values 	 •⁵ 8 •⁶ 4 and 0 •⁷ greatest 8, least 0 stated explicitly 	3		
Note	Notes:						
	4. The only valid approach to finding the stationary point is via differentiation. A numerical approach can only gain \bullet^6 .						

- 5. \bullet^7 is not available to candidates who do not consider both end points.
- 6. Vertical marking is not applicable to \bullet^6 and \bullet^7 .
- 7. Ignore any nature table which may appear in a candidate's solution; however, the appearance of (4,8) at a nature table is sufficient for \bullet^5 .
- 8. Greatest (4,8); least (9,0) does not gain \bullet^7 .
- 9. •⁵ and •⁷ are not available for evaluating y at a value of x, obtained at •⁴ stage, which lies outwith the interval $1 \le x \le 9$.
- 10. For candidates who **only** evaluate the derivative, \bullet^5 , \bullet^6 and \bullet^7 are not available.

Q	Question		Generic scheme	Illustrative scheme	Max mark
8.	(a)		 find expression for u₁ find expression for u₂ and express in the correct form 	• ¹ $5k - 20$ • ² $u_2 = k(5k - 20) - 20$ leading to $u_2 = 5k^2 - 20k - 20$	
Notes: Commonly Observed Responses:			served Responses:		2

Q	Question		Generic scheme	Illustrative scheme	Max mark			
8.	(b)		• ³ interpret information	• ³ $5k^2 - 20k - 20 < 5$				
			 ⁴ express inequality in standard quadratic form 	• $5k^2 - 20k - 25 < 0$				
			• ⁵ determine zeros of quadratic expression	● ⁵ –1, 5				
			• ⁶ state range with justification	• ⁶ $-1 < k < 5$ with eg sketch or table of signs	4			
Note	Notes:							

1. Candidates who work with an equation from the outset lose \bullet^3 and \bullet^4 . However, \bullet^5 and \bullet^6 are still available.

2. At \bullet^5 do not penalise candidates who fail to extract the common factor or who have divided the quadratic inequation by 5.

- 3. \bullet^4 and \bullet^5 are only available to candidates who arrive at a quadratic expression at \bullet^3 .
- 4. At •⁶ accept "k > -1 and k < 5" or "k > -1, k < 5" together with the required justification.
- 5. For a trial and error approach award 0/4.

Q	Question		Generic scheme	Illustrative scheme	Max mark
9.			Method 1	Method 1	
			• ¹ state linear equation	• $\log_2 y = \frac{1}{4} \log_2 x + 3$	
			• ² introduce logs	• ² $\log_2 y = \frac{1}{4} \log_2 x + 3 \log_2 2$	
			• ³ use laws of logs	• $\log_2 y = \log_2 x^{\frac{1}{4}} + \log_2 2^3$	
			• ⁴ use laws of logs	• $\log_2 y = \log_2 2^3 x^{\frac{1}{4}}$	
			• ⁵ state k and n	• ⁵ $k = 8, n = \frac{1}{4}$ or $y = 8x^{\frac{1}{4}}$	5
			Method 2	Method 2	
			• ¹ state linear equation	• $\log_2 y = \frac{1}{4} \log_2 x + 3$	
			• ² use laws of logs	• ² $\log_2 y = \log_2 x^{\frac{1}{4}} + 3$	
			• ³ use laws of logs	• $\log_2 \frac{y}{x^{\frac{1}{4}}} = 3$	
			• ⁴ use laws of logs	• $\frac{y}{x^{\frac{1}{4}}} = 2^3$	
			• ⁵ state k and n	• ⁵ $k = 8, n = \frac{1}{4}$ or $y = 8x^{\frac{1}{4}}$	5

Qu	uestion	Generic Scheme	Illustrative Scheme	Max Mark			
		Method 3	Method 3				
			The equations at \bullet^1 , \bullet^2 and \bullet^3				
			must be stated explicitly.				
		• ¹ introduce logs to $y = kx^n$	• ¹ $\log_2 y = \log_2 kx^n$				
		• ² use laws of logs	• ² $\log_2 y = n \log_2 x + \log_2 k$				
		• ³ interpret intercept	• ³ $\log_2 k = 3$				
		• ⁴ use laws of logs	• ⁴ $k = 8$				
		• ⁵ interpret gradient	• ⁵ $n = \frac{1}{4}$				
				5			
		Method 4	Method 4				
		• ¹ interpret point on log graph	• $\log_2 x = -12$ and $\log_2 y = 0$				
		• ² convert from log to exp. form	• ² $x = 2^{-12}$ and $y = 2^{0}$				
		• ³ interpret point and convert	• ³ $\log_2 x = 0$, $\log_2 y = 3$ $x = 1$, $y = 2^3$				
		• ⁴ substitute into $y = kx^n$ and evaluate k	• ⁴ $2^3 = k \times 1^n \Longrightarrow k = 8$				
		• ⁵ substitute other point into $y = kx^n$ and evaluate n	• ⁵ $2^0 = 2^3 \times 2^{-12n}$ $\Rightarrow 3 - 12n = 0$				
			$\Rightarrow n = \frac{1}{4}$	5			
	Notes:						
m 2. Tr	 Markers must not pick and choose between methods. Identify the method which best matches the candidates approach. Treat the omission of base 2 as bad form at •¹ and •³ in Method 1, at •¹ and •² for Method 2 and Method 3, and at •¹ in Method 4. 						
	3. ' $m = \frac{1}{4}$ ' or 'gradient $= \frac{1}{4}$ ' does not gain \bullet^5 in Method 3.						
4. Ac	4. Accept 8 in lieu of 2^3 throughout.						

4. Accept 8 in lieu of 2' throughout.
5. In Method 4 candidates may use (0,3) for •¹ and •² followed by (-12,0) for •³.

Question	Generic scheme	Illustrative scheme Max mark
	erved Responses:	
Candidate A		Candidate B
With no workin Method 3:	g.	With no working. Method 3:
k = 8	•4 🗸	<i>n</i> = 8 •4 ×
$n = \frac{1}{4}$	•5 🗸	$k = \frac{1}{4} \qquad \qquad \bullet^5 \mathbf{x}$
Award 2/5		Award 0/5
Candidate C		Candidate D
Method 3:		Method 2:
$\log_2 k = 3$	•3 🗸	$\log_2 y = \frac{1}{4}\log_2 x + 3 \qquad \bullet^1 \checkmark$
k = 8	•4 ✓	$\log_2 y = \log_2 x^{\frac{1}{4}} + 3$ • ² \checkmark
$n=\frac{1}{4}$	•5 🗸	$y = x^{\frac{1}{4}} + 3 \qquad \qquad \bullet^3 \mathbf{x} \bullet^4 \mathbf{x}$
		$k = 1, n = \frac{1}{4}$ $\bullet^5 $
Award 3/5		Award 2/5
Candidate E		
Method 2:		
$y = \frac{1}{4}x + 3$		
$y = \frac{1}{4}x + 3$ $\log_2 y = \frac{1}{4}\log_2$	<i>x</i> +3 ● ¹ ✓	
$\log_2 y = \log_2 x^{\frac{1}{4}}$		
$\frac{y}{x^{\frac{1}{4}}} = 3$	• ³ • ⁴ ×	
$y = 3x^{\frac{1}{4}}$	● ⁵ √ 1	
Award 3/5		

Q	uestio	on	Generic scheme	Illustrative scheme	Max mark
10.	(a)		Method 1 • ¹ calculate m_{AB} • ² calculate m_{BC} • ³ interpret result and state conclusion	Method 1 • $m_{AB} = \frac{3}{9} = \frac{1}{3}$ see Note 1 • $m_{BC} = \frac{5}{15} = \frac{1}{3}$ • $\dots \Rightarrow AB$ and BC are parallel (common direction), B is a common point, hence A, B and C are collinear.	3
			Method 2 •1 calculate an appropriate vector e.g. \overline{AB} •2 calculate a second vector e.g. \overline{BC} and compare •3 interpret result and state conclusion	Method 2 •1 $\overrightarrow{AB} = \begin{pmatrix} 9 \\ 3 \end{pmatrix}$ see Note 1 •2 $\overrightarrow{BC} = \begin{pmatrix} 15 \\ 5 \end{pmatrix}$ \therefore $\overrightarrow{AB} = \frac{3}{5}\overrightarrow{BC}$ •3 $\dots \Rightarrow$ AB and BC are parallel (common direction), B is a common point, hence A, B and C are collinear.	3
Note			Method 3 • ¹ calculate m _{AB} • ² find equation of line and substitute point • ³ communication	Method 3 • $m_{AB} = \frac{3}{9} = \frac{1}{3}$ • $2 \text{ eg, } y - 1 = \frac{1}{3}(x-2) \text{ leading to}$ $6 - 1 = \frac{1}{3}(17-2)$ • $3 \text{ since C lies on line A, B and C are collinear}$	
1. A 2. •	 •³ can only be awarded if a candidate has stated "parallel", "common point" and "collinear". 				

Question	_	ic scheme	Illus	trative scheme	Max mark
Commonly Obs Candidate A $m_{AB} = \frac{3}{9} = \frac{1}{3}$ $m_{BC} = \frac{5}{15}$ \Rightarrow AB and BC a B is a common hence A, B and are collinear.	point,	Candidate B $\begin{pmatrix} 9\\ 3 \end{pmatrix}$ $\begin{pmatrix} 15\\ 5 \end{pmatrix}$ $\therefore \ \overrightarrow{AB} = \frac{5}{3}\overrightarrow{BC}$ $\Rightarrow AB and BC are particular by a back of the second $	arallel ,	$\overrightarrow{BC} = \begin{pmatrix} 15\\5 \end{pmatrix} = 5 \begin{pmatrix} 3\\1 \end{pmatrix} \text{ and }$ $\begin{pmatrix} 9\\3 \end{pmatrix} = 3 \begin{pmatrix} 3\\1 \end{pmatrix} \bullet$ $\therefore \overrightarrow{AB} = \frac{5}{3} \overrightarrow{BC} ignore wor subsequent to correct statement at •2. \Rightarrow AB \text{ and BC are paral B is a common point, hence A, B and C$	king

Question		on	Generic scheme			Illustrative scheme		Max mark
10.	(b)		• ⁴ find radius		•4	6√10		
			$ullet^5$ determine an ap	opropriate rati	o • ⁵	e.g. 2:3 or $\frac{2}{5}$ (using B	and C)	
			 ⁶ find centre ⁷ state equation of 	of circle		or 3:5 or $\frac{8}{5}$ (using (8,3) $(x-8)^2 + (y-3)^2 = 360$		4
Note		the	correct centre appe	ars without wo	rking	● ⁵ is lost, ● ⁶ is awarde	d and \bullet^7 is	still
5. C	Do not	acce	ect centre or an incorpt $(6\sqrt{10})^2$ for \bullet^7 .	orrect radius a	ppear	s ex nihilo • ⁷ is not ava	ailable.	
Cano	didate	e D		(Candi	date E		
Radi	us = 6	5√10		• ⁴ 🖌	Radius	$5 = 3\sqrt{10}$	• ⁴	×
Inter	rprets	D as	midpoint of BC	• ⁵ ×	nterp	rets D as midpoint of A	AC ● ⁵	×
Cent	Centre D is $(9 \cdot 5, 3 \cdot 5)$ • ⁶ \checkmark Centre D is $(9 \cdot 5, 3 \cdot 5)$		Centre	e D is(5, 2)	• ⁶	√2		
(<i>x</i> -	$(9.5)^{2}$	+(y-	$(-3.5)^2 = 360$	•7 ✓1	(x-5)	$y^{2} + (y-2)^{2} = 90$	•7	√ 1
Cano	didate	e F		(Candi	date G		
Radi	us = 🗸	√ <u>10</u>		• ⁴ x	Radius	$5 = 6\sqrt{10}$	• ⁴	✓
Inter	rprets	D as	midpoint of AC	• ⁵ 🗴	CD	$\frac{3}{2}$ or simply $\frac{3}{2}$	• ⁵	<u> </u>
Cent	re D i	is(5, 2	2)	لكت	00		•	•
(x -	$(5)^{2} + ($	(y-2)	$)^{2} = 10$	•7 🖌 2	Centre	e D is(11, 4)	•6	ĸ
	, (,		(<i>x</i> -11	$)^{2} + (y-4)^{2} = 360$	•7	√ 1

Q	uestion	Generic scheme	Illustrative scheme	Max mark			
11.	(a)	Method 1 • 1 substitute for $\sin 2x$ • 2 simplify and factorise • 3 substitute for $1 - \cos^2 x$ and	Method 1 •1 $\frac{2\sin x \cos x}{2\cos x} - \sin x \cos^2 x$ stated explicitly as above or in a simplified form of the above •2 $\sin x(1-\cos^2 x)$ •3 $\sin x \times \sin^2 x$ leading to				
		simplify	$\sin^3 x$	3			
		Method 2 • ¹ substitute for $\sin 2x$	Method 2 •1 $\frac{2\sin x \cos x}{2\cos x} - \sin x \cos^2 x$ stated explicitly as above or in a simplified form of the above				
		 ² simplify and substitute for cos² x ³ expand and simplify 	• ² $\sin x - \sin x (1 - \sin^2 x)$ • ³ $\sin x - \sin x + \sin^3 x$ leading to $\sin^3 x$				
				3			
2. 3. 4. 5.	 into the expression given on the LHS. See Candidate B In method 2 where candidates attempt •¹ and •² in the same line of working •¹ may still be awarded if there is an error at •². •³ is not available to candidates who work throughout with A in place of x. Treat multiple attempts which are not scored out as different strategies, and apply General Marking Principle (r). On the appearance of LHS=0, the first available mark is lost; however, any further marks are still available. 						
Com	monly Ob	served Responses:					
Can	didate A		Candidate B				
$\frac{2\sin^2}{2}$	$\frac{1 x \cos x}{\cos x} - s$	$\sin x \cos^2 x = \sin^3 x \bullet^1 \checkmark$	$LHS = \frac{\sin 2x}{2\cos x} - \sin x \cos^2 x$				
sin	$x - \sin x \cos \theta$	$e^2 x = \sin^3 x$ e^2	=	$\frac{1 x \cos x}{\cos x}$			
1-c	$\cos^2 x = \sin^2 x$	$e^{2} x \qquad e^{3} x$	$=\sin x$				
In p with	h both sides king the LH	identity, candidates must work s independently ie in each line of IS must be equivalent to the line	$\sin x - \sin x \cos^2 x \bullet^1 \checkmark$ $\sin x (1 - \cos^2 x) \bullet^2 \checkmark$				

Question	Generic scheme	Illustrative scheme	Max mark				
11. (b)	 •⁴ know to differentiate sin³ x •⁵ start to differentiate •⁶ complete differentiation 	• ⁴ $\frac{d}{dx}(\sin^3 x)$ • ⁵ $3\sin^2 x$ • ⁶ ×cos x					
Notes:			3				
Commonly O	Commonly Observed Responses:						

[END OF MARKING INSTRUCTIONS]