

2017 Mathematics Paper 1 (Non-calculator)

Higher

Finalised Marking Instructions

 $\ensuremath{\mathbb{C}}$ Scottish Qualifications Authority 2017

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is reproduced, SQA should be clearly acknowledged as the source. If it is to be used for any other purpose, written permission must be obtained from permissions@sqa.org.uk.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments. This publication must not be reproduced for commercial or trade purposes.

Specific marking instructions for each question

Question		on	Generic scheme	Illustrative scheme	Max mark				
1.	(a) •1 evaluate expression		• ¹ evaluate expression	• ¹ 10	1				
Notes:									
Commonly Observed Responses:									

Q	Question		Generic scheme	Illustrative scheme	Max mark
1.	(b)		• ² interpret notation	• ² $g(5x)$	
			• ³ state expression for $g(f(x))$	$\bullet^3 2\cos 5x$	2
2. C n 3. پر 4. پ	andid ot gains $f(f(x))$	$ \begin{array}{l} \operatorname{lates} \\ \operatorname{in} \operatorname{any} \\ \operatorname{any} \\ \operatorname{any} \\ \operatorname{any} \\ \operatorname{any} \\ = 1 \\ \operatorname{any} \\$	y marks. $10\cos x$ award \bullet^2 . However, $10\cos x$	• ³ . on as either $g(x) \times f(x)$ or $g(x) + j$ x with no working does not gain any r rect 'simplification' of the function a	narks.
			served Responses:		
_	didate	= 2 co	$s(5x) = e^{2} \cdot e^{3}$		

Qı	Question		Generic scheme	Illustrative scheme	Max mark			
2.			• ¹ state coordinates of centre	• ¹ (4, 3)				
		• ² find gradient of radius		• ² $\frac{1}{3}$				
			• ³ state perpendicular gradient	• ³ -3				
			• ⁴ determine equation of tangent	•4 $y = -3x - 5$	4			
Note	s:							
1. A	ccept	$\frac{2}{6}$ for	$r \bullet^2$.					
3. ● ⁴ 4. At	 The perpendicular gradient must be simplified at •³ or •⁴ stage for •³ to be available. •⁴ is only available as a consequence of trying to find and use a perpendicular gradient. At •⁴, accept y+3x+5=0, y+3x=-5 or any other rearrangement of the equation where the constant terms have been simplified. 							
Com	monly	obs	served Responses:					

Question		on	Generic scheme	Illustrative scheme	Max mark
3.			• ¹ start to differentiate	• $12(4x-1)^{11}$	
			• ² complete differentiation	• ² ×4	2
Note		varda	d for correct application of the cha		
			served Responses:		
				Candidate B	
Wor	Candidate A $\frac{dy}{dx} = 12(4x-1)^{11} \times 4 \bullet^{1} \checkmark \bullet^{2} \checkmark$ $\frac{dy}{dx} = 36(4x-1)^{11}$ Working subsequent to a correct answer: General Marking Principle (n)			$\frac{dy}{dx} = 36(4x-1)^{11} \bullet^{1} \times \bullet^{2} \times$ ncorrect answer with no working	

Q	uestio	on	Generi	ic scheme	Illus	trative scheme	Max mark
4.			Me ^{•1} use the discr	thod 1 Timinant	• $4^2 - 4 \times 12^{-1}$	Method 1 $\times (k-5)$	
			• ² apply condition	on and simplify	• ² 36-4 k =	0 or $36 = 4k$	
			• ³ determine the	e value of k	• ³ $k=9$		3
			Method 2 •1 communicate and express in factorised form		• ¹ equal roo $\Rightarrow x^2 + 4x + 4$	Method 2 ots $-(k-5) = (x+2)^2$	
			• ² expand and c	ompare	• ² $x^2 + 4x +$	• ² $x^2 + 4x + 4$ leading to $k - 5 = 4$	
			• ³ determine the	e value of k	• ³ $k = 9$		
is 2. Ir	t the brac	ketec hod 1	in their next lin if candidates use	e of working. See	Candidates A	candidate treats ' $k-5$ and B. iminant = 0 ' then \bullet^2 is le	
Com	monl	y Obs	served Response	s:			
Can	didate	e A		Candidate B			
4 ² –	4×1>	< k - 5	• ¹ ✓	$4^2 - 4 \times 1 \times k - 5$	• ¹ x		
36-	-4 <i>k</i> =	0	• ² ✓	11 - 4k = 0	● ² ✓ 1		
<i>k</i> = 1	9		• ³ •	$k = \frac{11}{4}$	● ³ √ 1		

Question	Generic scheme	Illustrative scheme	Max mark
5. (a)	•1 evaluate scalar product	• ¹ 1	1
Notes:	•		
Commonly Obs	served Responses:		

Question	Generic scheme	Illustrative scheme	Max mark			
5. (b)	•² calculate u	• ² \sqrt{27}				
	• ³ use scalar product	• ³ $\sqrt{27} \times \sqrt{3} \times \cos \frac{\pi}{3}$				
	• ⁴ evaluate u.w	• $\frac{9}{2}$ or 4.5	3			
Notes:						
1. Candidates who treat negative signs with a lack of rigour and arrive at $\sqrt{27}$ gain \bullet^2 . 2. Surds must be fully simplified for \bullet^4 to be awarded.						
Commonly Observed Responses:						

Qı	uestion	Generic scheme	Illustrative scheme	Max mark			
6.		Method 1	Method 1				
		• ¹ equate composite function to x	• ¹ $h(h^{-1}(x)) = x$				
		• ² write $h(h^{-1}(x))$ in terms of $h^{-1}(x)$	• ² $(h^{-1}(x))^3 + 7 = x$				
		• ³ state inverse function	• ³ $h^{-1}(x) = \sqrt[3]{x-7}$ or $h^{-1}(x) = (x-7)^{\frac{1}{3}}$				
				3			
		Method 2	Method 2				
		• ¹ write as $y = x^3 + 7$ and start to rearrange	• ¹ $y-7=x^3$				
	• ² complete rearrangement • ² $x = \sqrt[3]{y-7}$		• ² $x = \sqrt[3]{y-7}$				
		• ³ state inverse function	• ³ $h^{-1}(x) = \sqrt[3]{x-7}$ or $h^{-1}(x) = (x-7)^{\frac{1}{3}}$				
			$h^{-1}(x) = (x-7)^3$	3			
		Method 3	Method 3				
		• ¹ interchange variables	• ¹ $x = y^3 + 7$				
		• ² complete rearrangement	• ² $y = \sqrt[3]{x-7}$				
		• ³ state inverse function	• ³ $h^{-1}(x) = \sqrt[3]{x-7}$ or $h^{-1}(x) = (x-7)^{\frac{1}{3}}$				
			$h^{-1}(x) = (x-7)^{\overline{3}}$	3			
Note							
1. y	1. $y = \sqrt[3]{x-7} \left(\text{or } y = (x-7)^{\frac{1}{3}} \right)$ does not gain \bullet^3 .						
2. A	t • ³ stage	, accept h^{-1} expressed in terms of an	y dummy variable eg $h^{-1}(y) = \sqrt[3]{y-7}$				
3. h	3. $h^{-1}(x) = \sqrt[3]{x-7}$ or $h^{-1}(x) = (x-7)^{\frac{1}{3}}$ with no working gains 3/3.						

Question	Generic s	scheme	Illustrative scheme	Max mark
Commonly Obs	served Responses:			
Candidate A				
	$x \to x^3 \to x^3 + 7 = h$ ^3 \rightarrow + 7 $\therefore -7 \to \sqrt[3]{}$	r(x)	 ¹√ awarded for knowing to per the inverse operations in re order 	
	$\sqrt[3]{x-7}$		● ² ✓	
	•			
	$h^{-1}(x) = \sqrt[3]{x-7}$		• ³ ✓	
Candidate B - I	BEWARE	Candidate C		
$h'(x) = \dots \bullet^3 \mathbf{x}$		$h^{-1}(x) = \sqrt[3]{x} - 7$ With no working		

	uestion	Gener	ic scheme	Illus	trative scheme	Max mark			
7.		• ¹ find midpoin	nt of AB	• ¹ (2,7)					
		• ² demonstrate	e the line is vertical	• ² m_{median} UI	ndefined				
		• ³ state equation	on	• ³ $x = 2$		3			
Note	es:								
1. <i>r</i>	$n_{median} = \frac{\pm 4}{0}$	alone is not suffi	cient to gain \bullet^2 . Ca	ndidates mus	t use either 'vertical' o	r			
	0	. However \bullet^3 is s							
2.	$m_{median} = \frac{4}{0}$	* ' ' $m_{median} = \frac{4}{0}$ in	npossible' ' $m_{median} = -$	$\frac{4}{2}$ infinite'	are not acceptable for	• ² .			
F	•	these are follow			ined' then award \bullet^2 , an				
3.	$m_{median} = \frac{4}{0}$	= 0 undefined' '	$m_{median} = -$ undefined	'are not ac	ceptable for \bullet^2 .				
	•		Ū		ent; however, see notes	5 and 6.			
					the coordinates of A ar				
			without any further	errors awar	d 1/3. However, if $a =$	2, then			
6. F	or candida	both \bullet^2 and \bullet^3 are available. 6. For candidates who find $15y = 2x + 121$ (median through B) or $3y = 2x + 21$ (median through							
	A) award 1/3.								
	A) award 1/	•	y = Zx + IZI (median	through B) c	or $3y = 2x + 21$ (median	through			
		•		through B) c	or $3y = 2x + 21$ (median	through			
Com		3. served Response			or $3y = 2x + 21$ (median Candidate C	through			
Com	monly Ob didate A	/3.	es:	•1√	- · ·	through			
Com Can	monly Ob didate A 7)	3. served Response	Candidate B (2,7) $m = \frac{4}{0}$		Candidate C (2,7)	through			
$\begin{array}{c} \text{Com} \\ \text{Can} \\ (2,7) \\ m = \\ = 0 \end{array}$	$\frac{1}{2}$	3. served Response • ¹ ✓ d • ² x	Candidate B $(2,7)$ $m = \frac{4}{0}$ $= 0$	• ¹ ✓	Candidate C (2,7) $m = \frac{4}{0}$	 ∍1√			
Com Can (2,7 m =	$\frac{1}{2}$	'3. served Response ● ¹ ✓	Candidate B (2,7) $m = \frac{4}{0}$	•1√	Candidate C (2,7) $m = \frac{4}{0}$ $y - 7 = \frac{4}{0}(x - 2)$	 ∍1√			
$\begin{array}{c} \text{Com} \\ \text{Can} \\ (2,7) \\ m = \\ = 0 \end{array}$	$\frac{1}{2}$	3. served Response • ¹ ✓ d • ² x	Candidate B $(2,7)$ $m = \frac{4}{0}$ $= 0$	• ¹ ✓	Candidate C (2,7) $m = \frac{4}{0}$ $y - 7 = \frac{4}{0}(x-2)$ 0 = 4x - 8	 ∍1√			
$\begin{array}{c} \text{Com} \\ \text{Cane} \\ (2,7) \\ m = \\ = 0 \\ x = \end{array}$	$\frac{1}{2}$	'3. served Response • ¹ √ d • ² ¥ • ³ √1	Candidate B $(2,7)$ $m = \frac{4}{0}$ $= 0$ $y = 7$ Candidate E	• ¹ √ • ² x • ³ √2	Candidate C (2,7) $m = \frac{4}{0}$ $y - 7 = \frac{4}{0}(x-2)$ 0 = 4x - 8	2^			
$\begin{array}{c} \text{Com} \\ \text{Cane} \\ (2,7) \\ m = \\ = 0 \\ x = \end{array}$	didate A 7) $\frac{4}{0}$ undefine 2 didate D	3. served Response • ¹ ✓ d • ² x	Candidate B $(2,7)$ $m = \frac{4}{0}$ $= 0$ $y = 7$	• ¹ ✓	Candidate C (2,7) $m = \frac{4}{0}$ $y - 7 = \frac{4}{0}(x-2)$ 0 = 4x - 8	2^			
$\begin{array}{c} \text{Com} \\ \text{Can} \\ (2,7) \\ m = \\ = 0 \\ x = \\ \end{array}$	didate A 7) 4 0 undefine 2 didate D 7)	3. served Response • ¹ √ d • ² × • ³ √1	Candidate B $(2,7)$ $m = \frac{4}{0}$ $= 0$ $y = 7$ Candidate E	• ¹ √ • ² x • ³ √2	Candidate C (2,7) $m = \frac{4}{0}$ $y - 7 = \frac{4}{0}(x-2)$ 0 = 4x - 8	2^			
Com Can (2,7) m = = 0 x = Can (2,7) Med	didate A 7) 4 0 undefine 2 didate D 7)	'3. served Response • ¹ √ d • ² ¥ • ³ √1	Candidate B $(2,7)$ $m = \frac{4}{0}$ $= 0$ $y = 7$ Candidate E (2,7)	• ¹ \checkmark • ² \star • ³ \checkmark 2 have an x	Candidate C (2,7) $m = \frac{4}{0}$ $y - 7 = \frac{4}{0}(x-2)$ 0 = 4x - 8	2^			

Question Ge				ic schem	e		Illus	strative s	scheme	Max mark
8.		• ¹ write in differentiable form				$\bullet^1 \frac{1}{2}$	t^{-1}			
		• ² differentiate				•2 -	$-\frac{1}{2}t^{-2}$			
Notes:		• ³ eval	uate der	ivative		•3 -	1 50			3
2. ● ² is		ailable fo	or differ	entiating		-			m at \bullet^1 award 0 ower of t .	/3.
Candio	late A			Candida	ate B			Candid	ate C	
$2t^{-1}$ $-2t^{-2}$	• ¹ • ²			$2t^{-1}$ $-2t^{-2}$		1		$-\frac{1}{2}t^{-2}$	$\bullet^1 \checkmark$ implied b	y •²✓
$-\frac{2}{25}$	• ³	✓1		$-\frac{1}{50}$	• ³ ×	-		$-\frac{1}{50}$	•3 ✓	
Candic	late D		Candid	ate E		Candida Bad for		ain rule	Candidate G	
$(2t)^{-1}$	● ¹ ✓		$(2t)^{-1}$	• ¹	✓	$2t^{-1}$		● ¹ ✓	$2t^{-1}$	• ¹ ×
$-(2t)^{-}$	• ² • ² ×		$-(2t)^{-2}$	• ²	x	$-2t^{-2} \times 2$	2	• ² 🗸	$-2t^{-2} \times 2$ $-\frac{4}{25}$	• ² ×
$-\frac{1}{100}$	• ³	1	$-\frac{2}{25}$	• ³	×	- <u>1</u> 50		•3 🗸	$-\frac{4}{25}$	● ³ √ 1

Q	Question		Generic scheme	Illustrative scheme	Max mark
9.	(a)		 ¹ interpret information ² state the value of <i>m</i> 	• ¹ 13 = 28 <i>m</i> +6 stated explicitly or in a rearranged form • ² $m = \frac{1}{4}$ or $m = 0.25$	
					2
Note	es:				
1. 5	Statin	gʻ <i>m</i> ∶	$=\frac{1}{4}$ or simply writing $\frac{1}{4}$ with	no other working gains only \bullet^2 .	
Com	monl	y Obs	served Responses:		
Can	didate	e A		Candidate B	
13 =	28 <i>u</i> _n	+6	• ¹ ×	28 = 13m + 6 • ¹ x	
$u_n =$	$u_n = \frac{1}{4} \qquad \qquad \bullet^2 \checkmark 1$			$m = \frac{22}{13} \qquad \qquad \bullet^2 \checkmark 1$	

Q	Question		Generic scheme	Illustrative scheme	Max mark		
9.	(b)	(i)	• ³ communicate condition for	\bullet^3 a limit exists as the recurrence			
			limit to exist	relation is linear and $-1 < \frac{1}{4} < 1$	1		
Note	es:						
	2. For \bullet^3 accept: any of $-1 < \frac{1}{4} < 1$ or $\left \frac{1}{4}\right < 1$ or $0 < \frac{1}{4} < 1$ with no further comment; or statements such as: " $\frac{1}{4}$ lies between -1 and 1" or " $\frac{1}{4}$ is a proper fraction" 3. \bullet^3 is not available for: $-1 \le \frac{1}{4} \le 1$ or $\frac{1}{4} < 1$ or statements such as: "It is between -1 and 1." or " $\frac{1}{4}$ is a fraction."						
			who state $-1 < m < 1$ can only gair in part (a).	\bullet^3 if it is explicitly stated			
		4	ept ' $-1 < a < 1$ ' for \bullet^3 .				
Com	Commonly Observed Responses:						
Can	Candidate C Candidate D						
(a) (b)		$=\frac{1}{4}$		(a) $\frac{1}{4}$ $\bullet^1 \checkmark \bullet^2$ (b) $-1 < m < 1$ $\bullet^3 \checkmark$	✓		

Q	Question		Generic scheme	Illustrative scheme	Max mark		
9.	(b)	(ii)	• ⁴ know how to calculate limit	• ⁴ $\frac{6}{1-\frac{1}{4}}$ or $L = \frac{1}{4}L + 6$			
			● ⁵ calculate limit	•5 8	2		
Note	es:	- 					
7. • 6 8. F 9. F	 6. Do not accept L = ^b/_{1-a} with no further working for •⁴. 7. •⁴ and •⁵ are not available to candidates who conjecture that L = 8 following the calculation of further terms in the sequence. 8. For L = 8 with no working, award 0/2. 9. For candidates who use a value of <i>m</i> appearing ex nihilo or which is inconsistent with their answer in part (a) •⁴ and •⁵ are not available. 						
Com	monl	y Obs	served Responses:				
Cano	didate	e E - I	no valid limit				
(a) <i>n</i>	(a) $m = 4$ • ¹ ×						
(b) <i>I</i>	(b) $L = \frac{6}{1-4} \bullet^4 \checkmark 1$ $L = -2 \bullet^5 \checkmark$						

Qı	uestio	n	Generic scheme	Illustrative scheme	Max mark
10.	(a)		 know to integrate between appropriate limits 	Method 1 • $\int_{0}^{2} \dots dx$	
			• ² use "upper - lower"	• ² $\int_{0}^{5} ((x^{3} - 4x^{2} + 3x + 1) - (x^{2} - 3x + 1))$	
			• ³ integrate	• $\frac{x^4}{4} - \frac{5x^3}{3} + 3x^2$	
			• ⁴ substitute limits	• ⁴ $\left(\frac{2^4}{4} - \frac{5 \times 2^3}{3} + 3 \times 2^2\right) - (0)$	
			● ⁵ evaluate area	• ⁵ $\frac{8}{3}$	
				Method 2	
			 know to integrate between appropriate limits for both integrals 	• $\int_{0}^{2} \dots dx$ and $\int_{0}^{2} \dots dx$	
			• ² integrate both functions	• ² $\frac{x^4}{4} - \frac{4x^3}{3} + \frac{3x^2}{2} + x$ and $\frac{x^3}{3} - \frac{3x^2}{2} + x$	
			• ³ substitute limits into both functions	• ³ $\left(\frac{2^4}{4} - \frac{4(2^3)}{3} + \frac{3(2^2)}{2} + 2\right) - 0$ and $\left(\frac{2^3}{3} - \frac{3(2^2)}{2} + 2\right) - 0$	
			• ⁴ evaluation of both functions	• $\frac{4}{3}$ and $\frac{-4}{3}$	
			• ⁵ evidence of subtracting areas	• $\frac{4}{3} - \frac{-4}{3} = \frac{8}{3}$	5

Question Generic		ic scheme	Illus	trative scheme	Max mark				
Notes:	Notes:								
 •¹ is not available to candidates who omit 'dx'. Treat the absence of brackets at •² stage as bad form only if the correct integral is obtained at •³. See Candidates A and B. Where a candidate differentiates one or more terms at •³, then •³, •⁴ and •⁵ are unavailable. Accept unsimplified expressions at •³ e.g. x⁴/4 - 4x³/3 + 3x²/2 + x - x³/3 + 3x²/2 - x. Do not penalise the inclusion of '+c'. Candidates who substitute limits without integrating do not gain •³, •⁴ or •⁵. •⁴ is only available if there is evidence that the lower limit '0' has been considered. Do not penalise errors in substitution of x = 0 at •³. 									
Commonly Obs	erved Response	s:							
Candidate A $\int_{0}^{1} \sqrt{x^{3} - 4x^{2} + 3x^{2}}$ $\frac{x^{4}}{4} - \frac{5x^{3}}{3} + 3x^{2}$	$+1-x^2-3x+1 dx$	$x \Rightarrow \bullet^2 \checkmark$	Candidate B •1 \checkmark $\int_{0}^{2} x^{3} - 4x^{2} + 3x + 1 - x^{2} - 3x + 1 dx$ • ² * $\frac{x^{4}}{4} - \frac{5x^{3}}{3} + 2x$ • ³ $\checkmark 1$ $\int = -\frac{16}{3}$ cannot be negative so $= \frac{16}{3} \cdot 5 \times$ However, $\int = -\frac{16}{3}$ so Area $= \frac{16}{3} \cdot 5 \checkmark$						
		Tre	ating individua	l integrals as areas					
Candidate C - I • ¹ \checkmark • ² \checkmark • ³ \checkmark $\frac{4}{3}$ and $\frac{-4}{3}$ \therefore Area is $\frac{4}{3} - \left(\frac{4}{3}\right)$	4	Candidate D - M • ¹ \checkmark • ² \checkmark • ³ \checkmark $\frac{4}{3}$ and $\frac{-4}{3}$ • ⁴ $=\frac{4}{3}$ \therefore Area is $\frac{4}{3} + \frac{4}{3}$	√	Candidate E - Method a • ¹ \checkmark • ² \checkmark • ³ \checkmark $\frac{4}{3}$ and $\frac{-4}{3}$ • ⁴ \checkmark Area cannot be negativ \therefore Area is $\frac{4}{3} + \frac{4}{3} = \frac{8}{3}$ • ⁵	/e				

Que	estio	n	Generic scheme	Illustrative scheme	Max mark
10.	(b) • ⁶ use " <i>lin</i>		• ⁶ use "line - quadratic"	Method 1 • ⁶ $\int ((1-x)-(x^2-3x+1)) dx$	
			• ⁷ integrate	• ⁷ $-\frac{x^3}{3} + x^2$	
			 ⁸ substitute limits and evaluate integral 	• ⁸ $\left(-\frac{2^3}{3}+2^2\right)-(0)=\frac{4}{3}$	
			• ⁹ state fraction	• ⁹ $\frac{1}{2}$	
				Method 2 • $^{6}\int ((x^{3}-4x^{2}+3x+1)-(1-x))dx$	
			• ⁶ use "cubic - <i>line</i> "		
			• ⁷ integrate	• ⁷ $\frac{x^4}{4} - \frac{4x^3}{3} + 2x^2$	
			• ⁸ substitute limits and evaluate integral	$\bullet^{8} \left(\frac{2^{4}}{4} - 4 \times \frac{2^{3}}{3} + 2 \times 2^{2} \right) - (0) = \frac{4}{3}$	
			• ⁹ state fraction	• ⁹ $\frac{1}{2}$	
				Method 3	
			• ⁶ integrate line	$\bullet^6 \int (1-x) dx = \begin{bmatrix} 2\\ x \\ x - \frac{2}{2} \end{bmatrix}_0^2$	
			• ⁷ substitute limits and evaluate integral	$\bullet^7 \left(2 - \frac{2^2}{2}\right) - (0) = 0$	
			 evidence of subtracting integrals 	•80- $\left(-\frac{4}{3}\right) = \frac{4}{3} \text{ or } \frac{4}{3} = 0$	
			• ⁹ state fraction	• $9\frac{1}{2}$	4

Question	Generic scheme	Illustrative scheme	Max mark					
Notes:								
candidate ha	IMPORTANT: Notes prefixed by *** may be subject to General Marking Principle (n). If a candidate has been penalised for the error in (a) then they must not be penalised a second time for the same error in (b).							
10. In Method correct in 11. Candidat to the ab 12. Where a unavailat	ot available to candidates who omit ds 1 and 2 only, treat the absence of ntegral is obtained at • ⁷ . es who have an incorrect expression sence of brackets lose • ² , but are aw candidate differentiates one or more ole. es where Note 3 has applied in part (⁶ brackets at \bullet^6 stage as bad form on to integrate at the \bullet^3 and \bullet^7 stage duvarded \bullet^6 . e terms at \bullet^7 , then \bullet^7 , \bullet^8 and \bullet^9 are	ie solely					
13. In Method	ds 1 and 2 only, accept unsimplified	expressions at • ⁷ e.g. $x - \frac{x^2}{2} - \frac{x^3}{3} + \frac{3}{2}$	$\frac{x^2}{2} - x$					
14. Do not pe	enalise the inclusion of ' $+c$ '.							
	Methods 1 and 2 and \bullet^7 in method 3 in the formula of the formu	s only available if there is evidence	that the					
16. At the • ⁹ awarded.	stage, the fraction must be consiste	nt with the answers at $ullet^5$ and $ullet^8$ for $ullet$	⁹ to be					
17. Do not pe	17. Do not penalise errors in substitution of $x = 0$ at \bullet^8 in Method 1 & 2 or \bullet^7 in Method 3.							
Commonly Obs	served Responses:							

Question	Generic scheme	Illustrative scheme	Max mark
11.	 ¹ determine the gradient of given line or of AB ² determine the other gradient ³ find a 	Method 1 • $\frac{2}{3}$ or $\frac{a-2}{12}$ • $\frac{a-2}{12}$ or $\frac{2}{3}$ • $\frac{a-2}{12}$ or $\frac{2}{3}$	
	 ¹ determine the gradient of given line ² equation of line and substitute 	Method 2	
Notes:	• ³ solve for a	$a-2=\frac{2}{3}(5+7)$ • ³ 10	3
Commonly Ob Candidate A simultaneous $m_{\text{line}} = \frac{2}{3}$ $3y = 2x + 20$ $3y = 2x - 10 + 30$ $0 = 0 + 30 - 3a$ $3a = 30$ $a = 10$	equations $ \begin{array}{c} \bullet^{1} \checkmark \\ 3a \\ \bullet^{2} \checkmark \end{array} $ $ \begin{array}{c} m_{AB} = \frac{a-2}{12} \\ \frac{a-2}{12} = -2 \\ a = -22 \\ \bullet^{3} \end{array} $	y-2 = $\frac{-}{3}(x+7)$ 3y = 2x+20 3y = 2×5+20 3y = 30 y = 10	2 ,2 ✓ ,3 ∧

Q	Question		Gener	ic scheme	Illustrative scheme		e	Max mark
12.			• ¹ use laws of l	ogs	• ¹ $\log_a 9$			
			• ² write in expo	onential form	• ² $a^{\frac{1}{2}} = 9$			
			• ³ solve for a		• ³ 81			3
Note	es:				r			
2. A 3. • ²	 36/4 must be simplified at •¹ or •² stage for •¹ to be awarded. Accept log 9 at •¹. •² may be implied by •³. 							
			served Response					
Cano	didate	e A		Candidate B		Candidate C		
\log_a	144		• ¹ ¥	$\log_a 32$	• ¹ 🗴	$\log_a 9$	●1 🗸	
$a^{\frac{1}{2}} =$	= 144		● ² <mark>√1</mark>	$a^{\frac{1}{2}} = 32$	● ² ✓1	$a = 9^{\frac{1}{2}}$	• ² ¥	
a = '	12		• ³ x		•3 ^	<i>a</i> = 3	• ³ √ 2	
	didate							
2 log	g _a 36 -	$-2\log$	$g_a 4 = 1$					
\log_a	36² -	$-\log_a$	$4^2 = 1 \bullet^1 \checkmark$					
$\log_a \frac{36^2}{4^2} = 1$								
\log_a	81=1	1 4	• ² ✓					
a = 8	81		●3✓					

Question		Generic scheme	Illustrative scheme	Max mark	
13.		• ¹ write in integrable form	• $(5-4x)^{-\frac{1}{2}}$		
		• ² start to integrate	• $(5-4x)^{-\frac{1}{2}}$ • $\frac{(5-4x)^{\frac{1}{2}}}{\frac{1}{2}}$		
		• ³ process coefficient of x	• ³ × $\frac{1}{(-4)}$		
Notes:		• ⁴ complete integration a simplify	nd $e^4 -\frac{1}{2}(5-4x)^{\frac{1}{2}}+c$	4	
 For a form For a form If ca brace '+ c 	candic n awar andida :ket no ' is reo	d 0/4. tes start to integrate individual te o further marks are available. quired for• ⁴ .	t, only • ¹ is available. ator' without attempting to write in int erms within the bracket or attempt to e		
		served Responses:	Candidata D		
Candidat	te a		Candidate B		
$(5-4x)^{-2}$	<u>1</u> 2	•1 🗸	$(5-4x)^{\frac{1}{2}}$ $\bullet^1 x$		
$\left \begin{array}{c} \frac{(5-4x)^{\frac{1}{2}}}{\frac{1}{2}} \end{array} \right $	-	• ² ✓ • ³ ^	$\frac{\left(5-4x\right)^{\frac{3}{2}}}{\frac{3}{2}} \times \frac{1}{\left(-4\right)} \qquad \qquad \bullet^{2} \checkmark 1 \bullet^{3}$	✓	
2(5-4x)	$(\frac{1}{2} + C)$	• ⁴ <mark>√</mark> 2	$-\frac{(5-4x)^{\frac{3}{2}}}{6}+c$ • ⁴ \checkmark 1		
Candidat	te C		Candidate D		
Differentiate in part:			Differentiate in part:		
$(5-4x)^{-2}$	<u>1</u> 2	•1 🗸	$\left(5-4x\right)^{-\frac{1}{2}} \qquad \bullet^1 \checkmark$		
$-\frac{1}{2}(5-4)$			$(5-4x)^{-\frac{1}{2}} \qquad \bullet^{1} \checkmark$ $\frac{(5-4x)^{\frac{1}{2}}}{\frac{1}{2}} \times (-4) \qquad \bullet^{2} \checkmark \bullet^{3} \varkappa$ $-8(5-4x)^{\frac{1}{2}} + c \qquad \bullet^{4} \checkmark 1$		
$\left \frac{1}{8} (5-4x) \right $	$)^{-2} + c$	• ⁴ <mark>√1</mark>	$-8(5-4x)^{\frac{1}{2}}+c$ • ⁴ \checkmark 1		

Q	Question		Generic Scheme	Illustrative Scheme	Max Mark			
14.	(a)		• ¹ use compound angle formula	• $k \sin x^{\circ} \cos a^{\circ} - k \cos x^{\circ} \sin a^{\circ}$ stated explicitly				
			• ² compare coefficients	• ² $k \cos a^\circ = \sqrt{3}, k \sin a^\circ = 1$ stated explicitly				
			• ³ process for k	• ³ $k = 2$				
			• ⁴ process for <i>a</i> and express in required form	• $4 2\sin(x-30)^{\circ}$	4			
Notes:								
1. A	1. Accept $k(\sin x^{\circ} \cos a^{\circ} - \cos x^{\circ} \sin a^{\circ})$ for \bullet^{1} . Treat $k \sin x^{\circ} \cos a^{\circ} - \cos x^{\circ} \sin a^{\circ}$ as bad form							

- only if the equations at the $ullet^2$ stage both contain k .
- 2. Do not penalise the omission of degree signs.

3. $2\sin x^{\circ}\cos a^{\circ} - 2\cos x^{\circ}\sin a^{\circ}$ or $2(\sin x^{\circ}\cos a^{\circ} - \cos x^{\circ}\sin a^{\circ})$ is acceptable for \bullet^{1} and \bullet^{3} .

- 4. In the calculation of k = 2, do not penalise the appearance of -1.
- 5. Accept $k \cos a^{\circ} = \sqrt{3}, -k \sin a^{\circ} = -1$ for •².
- 6. •² is not available for $k \cos x^{\circ} = \sqrt{3}$, $k \sin x^{\circ} = 1$, however, •⁴ is still available.
- 7. •³ is only available for a single value of k, k > 0.
- 8. •³ is not available to candidates who work with $\sqrt{4}$ throughout parts (a) and (b) without simplifying at any stage.
- 9. •⁴ is not available for a value of a given in radians.
- 10. Candidates may use any form of the wave equation for \bullet^1 , \bullet^2 and \bullet^3 , however, \bullet^4 is only available if the value of a is interpreted in the form $k \sin(x-a)^\circ$
- 11. Evidence for \bullet^4 may only appear as a label on the graph in part (b).

Commonly Observed Responses:

Responses with missing information in working:

	-	-
Candidate A		Candidate B
	• ¹ ^	$k\sin x\cos a - k\cos x\sin a \bullet^1 \checkmark$
$2\cos a = \sqrt{3}$ $2\sin a = 1$ $\tan a = \frac{1}{\sqrt{3}}, a = 30$ $2\sin(x - 30)^{\circ}$	• ² • • ³ •	$\cos a = \sqrt{3}$ $\sin a = 1$ $\tan a = \frac{1}{\sqrt{3}}$ Not consistent with equations $at \cdot^{2}.$ $2\sin(x-30)^{\circ}$ $\bullet^{3} \checkmark \bullet^{4} \bigstar$

Question	Gener	ic Scheme	Illus	trative Scheme	Max Mark
Responses wit	h the correct ex	pansion of $k \sin(x -$	$a)^{\circ}$ but erro	rs for either \bullet^2 or \bullet^4 .	
Candidate C		Candidate D		Candidate E	
$k\cos a = \sqrt{3}, k \sin a$	$\sin a = 1 \bullet^2 \checkmark$	$k\cos a = 1, k\sin a =$	√3 •² ≭	$k\cos a = \sqrt{3}, k\sin a = -$	-1 ● ² ≭
$\tan a = \sqrt{3}$ $a = 60$	•4 🗴	$\tan a = \sqrt{3}$ a = 60 $2\sin(x - 60)^{\circ}$	● ⁴ √ 1	$\tan a = -\frac{1}{\sqrt{3}}, \ a = 330$	
				$2\sin(x-330)^{\circ}$	● ⁴ √ 1
Responses wit	h the incorrect l	abelling; k sin A cos	$B-k\cos As$	in B from formula list.	
Candidate F		Candidate G		Candidate H	
$k \sin A \cos B - k$	$k \cos A \sin B \bullet^1 x$	$k \sin A \cos B - k \cos B$	$A \sin B \bullet^{1} \varkappa$	$k \sin A \cos B - k \cos A s$	in B ●¹ ≭
$k\cos a = \sqrt{3}$		$k\cos x = \sqrt{3}$		$k\cos \mathbf{B} = \sqrt{3}$	
$k \sin a = 1$	• ² ✓	$k \sin x = 1$	• ² 🗶	$k\cos \mathbf{B} = \sqrt{3}$ $k\sin \mathbf{B} = 1$	• ² x
$\tan a = \frac{1}{\sqrt{3}}, a =$	= 30	$\tan x = \frac{1}{\sqrt{3}}, x = 30$		$\tan B = \frac{1}{\sqrt{3}}, B = 30$ $2\sin(x-30)^{\circ} \bullet^{3}$	
$2\sin(x-30)^{\circ}$	● ³ ✓ ● ⁴ ✓	$2\sin(x-30)^{\circ}$	● ³ √ ● ⁴ √ 1	$2\sin(x-30)^\circ$ • ³	∕•⁴ ✓1

Question		on	Generic scheme	Illustrative scheme	Max mark			
14.	(b)		• ⁵ roots identifiable from graph	• ⁵ 30 and 210				
			• ⁶ coordinates of both turning points identifiable from graph	• ⁶ (120, 2) and (300, -2)				
			• ⁷ y-intercept and value of y at x = 360 identifiable from graph		3			
Note	es:							
14. 15. 16.	 13. Ignore any part of a graph drawn outwith 0 ≤ x ≤ 360. 14. Vertical marking is not applicable to •⁵ and •⁶. 15. Candidates sketch arrived at in (b) must be consistent with the equation obtained in (a), see also candidates I and J. 16. For any incorrect horizontal translation of the graph of the wave function arrived at in part(a) only •⁶ is available. 							
Com	Commonly Observed Responses:							
Cano	Candidate I			Candidate J				
(a) $2\sin(x-30)$ correct equation				a) $2\sin(x+30)$ incorrect equation				
(b) l	ncorre	ect tr	anslation:	(b) Sketch of $2\sin(x+30)$				
Sketch of $2\sin(x+30)$								
Only	• ⁶ is a	availa		ll 3 marks are available				

Q	uestion	Generic scheme	Illustrative scheme	Max mark			
15.	(a)	\bullet^1 state value of a	• ¹ -5				
		\bullet^2 state value of b	• ² 3	2			
Notes:							
Commonly Observed Responses:							

Question		on	Generic scheme		Illustrative Scheme	Max Mark		
15.	(b)		• ³ state value of integral	• ³	10	1		
 Notes: 1. Candidates answer at (b) must be consistent with the value of b obtained in (a). 2. In parts (b) and (c), candidates who have 10 and -6 accompanied by working, the working must be checked to ensure that no errors have occurred prior to the correct answer appearing. 								
Commonly Observed Responses: Candidate A From (a) $a = -3 \cdot \mathbf{x}$ $b = 5 \cdot \mathbf{x}$ $\int h(x) dx = 14 \cdot \mathbf{x}$								

Question		on	Generic scheme	Illustrative scheme		Max mark	
15.	(c)		• ⁴ state value of derivative	• ⁴	-6	1	
Notes:							
Commonly Observed Responses:							
Com	imoni	ly Obs	served Responses:				

[END OF MARKING INSTRUCTIONS]