Question	Generic Scheme	Illustrative Scheme	Max Mark		
1(a)					
• ¹ calculate gr	adient of AB	• $m_{AB} = -3$			
• ² use property of perpendicular lines		• ² $m_{alt} = \frac{1}{3}$			
• ³ substitute in	nto general equation of a line	• ³ $y-3=\frac{1}{3}(x-13)$			
• ⁴ demonstrate	e result	• ⁴ \Rightarrow x-3y=4	4		
Notes:					
1. • Is only av 2. • ⁴ is only av and • ⁴ . 3. The ONLY a 4 = x - 3y,	 •³ is only available as a consequence of trying to find and use a perpendicular gradient. •⁴ is only available if there is/are appropriate intermediate lines of working between •³ and •⁴. The ONLY acceptable variations for the final equation for the line in •⁴ are 4 = x-3y, -3y + x = 4, 4 = -3y + x. 				
Commonly Ob	served Responses:				
Candidate A		Candidate B			
$m_{AB} = \frac{-1 - (-5)}{-5 - 7} = \frac{4}{-12} = -\frac{1}{3}$ $m_{alt} = 3$ $y - 3 = 3(x - 13)$ $e^{1} \times e^{2\sqrt{1}}$ $e^{3\sqrt{1}} = \frac{3}{\sqrt{1}}$ $e^{3\sqrt{1}} = \frac{3}{\sqrt{1}}$ $e^{4} \times y = \frac{1}{3}x - \frac{4}{3}$					
• ⁴ is not available		3y = x - 4 - not acceptable			
		3y - x = -4 - not acceptable			
		$x - 3y = 4\checkmark$			

Question	Generic Scheme	Illustrative Scheme	Max Mark		
1(b)					
 ⁵ calculate r 	nidpoint of AC	• 5 M _{AC} = (4,5)			
• ⁶ calculate §	gradient of median	• ⁶ $m_{BM} = 2$			
• ⁷ determine	equation of median	• ⁷ $y=2x-3$	3		
Notes:					
 4. •⁶ and •⁷ a 5. •⁷ is only a 6. Candidate triangle ga 7. At •⁷ acception 	 4. •⁶ and •⁷ are not available to candidates who do not use a midpoint. 5. •⁷ is only available as a consequence of using a non-perpendicular gradient and a midpoint. 6. Candidates who find either the median through A or the median through C or a side of the triangle gain 1 mark out of 3. 7. At •⁷ accept v = (-5) = 2(x = (-1)), v = 5 = 2(x = 4), v = 2x + 3 = 0 or any other rearrangement of 				
the equation	on.				
Commonly O	bserved Responses:				
Median throu	ıgh A	Median through C			
$\mathbf{M}_{BC} = (6, -1)$		$\mathbf{M}_{AB} = (-3, 1)$			
$m_{AM} = \frac{-8}{11}$	$m_{AM} = \frac{-8}{11} \qquad \qquad m_{CM} = \frac{1}{8}$				
$y+1 = \frac{-8}{11}(x-1)$	$y+1 = \frac{-8}{11}(x-6)$ or $y-7 = \frac{-8}{11}(x+5)$ $y-3 = \frac{1}{8}(x-13)$ or $y-1 = \frac{1}{8}(x+3)$				
Award 1/3		Award 1/3			
1(c)					
• ⁸ calculate	x or y coordinate	• $x = 1 \text{ or } y = -1$			
 ⁹ calculate r intersection 	remaining coordinate of the point of	• $y = -1 \text{ or } x = 1$	2		
Notes:		I	<u> </u>		
8. If the can both coord	didate's 'median' is either a vertical linates are correct, otherwise award	or horizontal line then award 1 out 0.	of 2 if		
Commonly O	bserved Responses:				
For candidat	es who find the altitude through B	Candidate A			
in part (b)		$y-5=2(x-4)$ • $\sqrt[4]{}$			
$x = -\frac{1}{-1}$	o	y = 2x - 13 - error			
5					
$y = -\frac{7}{2}$	2 ✓ 1	x-3y=4			
5		(c) y = 2x - 13	1		
		Leading to $x = 7$ and $y = 1$	<u> </u>		

Question	Generic Scheme	Illustra	ative Scheme	Max Mark
2(a)				
 ¹ interpret notation ² state a correct expression 		• $f((1+x)(3-$ implied by	(2, x) + 2 stated or (2, x) + 2 stated or	
		• $10+(1+x)$ implied by	(3-x)+2 stated of $(3-x)+2$	2
Notes:				
1. \bullet^1 is not as	vailable for $g(f(x)) = g(10+x)$ but • ²	may be award	led for $(1+10+x)(3-(x+1))(3-(x+1))(3-(x+1))(3-(x+1))(3-(x+1)))$	(10+x))+2.
Commonly O	bserved Responses:			
Candidate A		Candi	date B	
(a) $f(g(x)) = (x)$	$(f(x))^{+}$ (1+10+x)(3-(10+x))+2 $(1-x)^{+}$	f(g(x)) = 10(x)	(1+x) - (3-x)) + 2 •	1 2 \times
(b) = -75	$5 - 18x - x^2$ or $-x^2 - 18x - 75$ $3\sqrt{7}$			
=-(x	2 +18x • 4 • 1			
=-(x	+9) ² • ⁵ ✓1	Candi	date C	
=-(x)	$(+9)^{2}+6$			
C.		f(g(x))	
(c) $-(x+$	$(9)^2 + 6 = 0$ • • • • • •	=10((1+x)(3-x)+2)	• ² ×
x = -2	$9 + \sqrt{6}$ or $-9 - \sqrt{6}$ $e^7 \sqrt{1}$			
2(b)				
• ³ write $f(g)$	(x)) in quadratic form	• 3 15+2x-x ²	or $-x^2 + 2x + 15$	
	Method 1		Method 1	
• ⁴ identify co	mmon factor	• $^{4} -1(x^{2}-2x)$ by • 5	stated or implied	
• ⁵ complete the square		• ⁵ $-1(x-1)^2 + 16$		
	Method 2		Method 2	
• ⁴ expand completed square form and equate coefficients		e^4 $px^2 + 2pqx$	$p + pq^2 + r$ and $p = -1$,	
• ⁵ process for q and r and write in required form		• ⁵ $q = -1$ and Note if $p = 1$	r = 16 • ⁵ is not available	3

Notes:				
2. Accept $16 - (x-1)^2$ or $-[$	$(x-1)^2 - 16$] at • ⁵ .			
Commonly Observed Response	s:			
Candidate A	Candidate B	Candidate C		
$(r^2 - 2r - 15) - 4$	$15+2x-x^2$ $\bullet^3 \checkmark$	$w^2 + 2w + 15$		
-(x - 2x - 13) • •	$x^2 - 2x - 15$ • ×	-x + 2x + 15	, √	
-(x - 2x + 1 - 1 - 15)	$px^2 + 2pqx + pq^2 + r$ and p	$=1$ $-(x+1) \dots$	X	
$-(x-1)^2 - 16$	$q = -1$ $r = -16$ \bullet^5 2 e	eased $\left \begin{array}{c} -(x+1)^2 + 14 \\ \end{array} \right $	×	
Candidate D	Candidate E	Candidate F		
$15+2x-x^2$	$15+2x-x^2$ $\bullet^3 \checkmark$	$-x^2 + 2x + 15$	3 🗸	
$x^2 - 2x - 15$ 4	$x^2 - 2x - 15$ $\bullet^4 \checkmark$	$-(x+1)^2$	⁴ ×	
$(x-1)^2 - 16$ • 5 2 eased	$(x-1)^2 - 16$	$-(x+1)^2+16$	5 🔽	
Eased, unitary coefficient of x^2 (lower level skill)	so $15 + 2x - x^2 = -(x - 1)^2$	+16 5 ✓		
2(c)				
• ⁶ identify critical condition	• ⁶ -1(2	$(x-1)^2 + 16 = 0$		
	or f	f((g(x)) = 0		
• ⁷ identify critical values	• ⁷ 5 an	d −3	2	
Notes:				
3. Any communication indicat	ing that the denominator d	cannot be zero gains \bullet^6 .		
4. Accept $x=5$ and $x=-3$ or	$x \neq 5$ and $x \neq -3$ at •'.			
5. If $x = 5$ and $x = -3$ appear v	vithout working award 1/2.	•		
Commonly Observed Response	s: Candidat	e B		
	Cundidut			
1	1			
$-(x-1)^2 + 16$ 7	f(g(x))	6		
$x \neq 5$	f(g(x)) >	$0 \qquad \overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}$		
	x = -3, x =	= 5 • •		
	-3 < x x	<5		
3(a)	1			
• ¹ determine the value of the required term • ¹ $22\frac{3}{4}$ or $\frac{91}{4}$ or 22.75				
Notes:				
1. Do not penalise the inclusio	1. Do not penalise the inclusion of incorrect units.			
2. Accept rounded and unsimplified answers following evidence of correct substitution.				
commonly observed response	<u>.</u>			

Question	Generic Scheme	Illustrative Scheme	Max Mark
3(b)			
	Method 1 (Considering both limits)	Method 1	
• ² know how	to calculate limit	• ² $\frac{32}{1-\frac{1}{3}}$ or $L = \frac{1}{3}L + 32$	
• ³ know how	to calculate limit	• ${}^3 \frac{13}{1-\frac{3}{4}}$ or $L = \frac{3}{4}L + 13$	
• ⁴ calculate	limit	• ⁴ 48	
● ⁵ calculate	limit	• ⁵ 52	
• ⁶ interpret l	imits and state conclusion	• 6 52 > 50 \therefore toad will escape	
(Frog f	Method 2 First then numerical for toad)	Method 2	
• ² know how	to calculate limit	• $^{2}\frac{32}{1-\frac{1}{2}}$ or $L = \frac{1}{3}L + 32$	
• ³ calculate	limit	• ³ 48	
 ⁴ determine than 50 	the value of the highest term less	• ⁴ 49·803	
 ⁵ determine greater th 	the value of the lowest term an 50	• $5 50 \cdot 352$	
• ⁶ interpret i	nformation and state conclusion	• $50 \cdot 352 > 50$: toad will escape	
(Num	Method 3 erical method for toad only)	Method 3	
• ² continues	numerical strategy	 ² numerical strategy ³ 30.0625 	
 ³ exact valu ⁴ determine 	e the value of the highest term less	• 4 49 · 803	
than 50 • ⁵ determine	the value of the lowest term	• $5 50 \cdot 352$	
greater th • ⁶ interpret i	an 50 nformation and state conclusion	• $50 \cdot 352 > 50 \therefore$ toad will escape	
	Method 4	Method 4	
(L • ² & • ³ know	imit method for toad only) how to calculate limit	• ² & • ³ $\frac{13}{1-\frac{3}{4}}$ or $L = \frac{3}{4}L + 13$	
• 4 & • 5 calcul	ate limit	$\bullet^4 \& \bullet^5 52$	
• ⁶ interpret l	imit and state conclusion	• 6 52 > 50 \therefore toad will escape	5

Notes:					
 •⁶ is unavail 4. For candidation 	able for candida tes who only co	ates who do no nsider the frog	ot consider the toad in the g numerically award 1/5 fo	ir conclusion. or the strategy.	
Commonly Obse	rved Response	s:			
Error with frogs limit - Frog Only	Using / / Toa	Method 3 - ad Only	Using Method 3- Toad Only	Using Method 3 - Toad Only	
$L_{\rm F} = \frac{34}{1 - \frac{1}{3}} \stackrel{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{$	$\begin{array}{c} \bullet^{2} \checkmark \\ \bullet^{3} \checkmark \\ \bullet^{4} \text{ missin} \\ \bullet^{5} 50 \cdot 35 \\ \bullet^{6} 50.35 \\ \bullet^{6} 50.35 \\ \text{so the to} \end{array}$	$52 \checkmark$ 52 > 50 $52 > cad escapes. \checkmark$	• ² \checkmark • ³ \checkmark • ⁴ missing [^] • ⁵ 50.1.rounding error × • ⁶ 50.1 > 50 \checkmark so the toad escapes.	e^{2} e^{3} e^{4} $49 \cdot 7$ rounding $error \times$ e^{5} $50 \cdot 1$ e^{6} 50.1 > 50 so the toad escapes.	
Toad Conclusions Limit = 52 This is greater than the height of the well and so the toad will escape - award • ⁶ .					
However					
Limit =52 and so the toad escapes - \bullet^6 ^.					
Iterations					
$f_1 = 32$	$t_1 = 13$				
f = 12.667	t = 22.75				

$J_1 = 32$	$i_1 - 15$	
$f_2 = 42 \cdot 667$	$t_2 = 22 \cdot 75$	
$f_3 = 46 \cdot 222$	$t_3 = 30.0625$	
$f_4 = 47 \cdot 407$	$t_4 = 35 \cdot 547$	
$f_5 = 47 \cdot 802$	$t_5 = 39 \cdot 660$	
$f_6 = 47 \cdot 934$	$t_6 = 42 \cdot 745$	
$f_7 = 47 \cdot 978$	$t_7 = 45 \cdot 059$	
$f_8 = 47 \cdot 993$	$t_8 = 46 \cdot 794$	
$f_9 = 47 \cdot 998$	$t_9 = 48 \cdot 096$	
	$t_{10} = 49 \cdot 072$	
	$t_{11} = 49 \cdot 804$	
	$t_{12} = 50.353$	

Question	Generic Scheme	Illustrative Scheme	Max Mark
4(a)			
• ¹ know to equate $f(x)$ and $g(x)$		$ 1 \frac{1}{4}x^2 - \frac{1}{2}x + 3 = \frac{1}{4}x^2 - \frac{3}{2}x + 5 $	
		$\bullet^2 x=2$	2
Notes:			
1. • ¹ and • ² are not available to candidates who: (i) equate zeros, (ii) give without working, (iii) arrive at $x = 2$ with erroneous working.			answer only
Commonly Ob	served Responses:		
Candidate A		Candidate B	
$y = \frac{1}{4}x^2 - \frac{1}{2}x - 1$	+ 3	$\frac{1}{4}x^2 - \frac{1}{2}x = -3$	
$y = \frac{1}{4}x^2 - \frac{3}{2}x - 3$	+5 • ¹ ✓	$\frac{1}{4}x^2 - \frac{3}{2}x = -5 \bullet^1 \times$	
subtract to get			
0 = x - 2	2	$x = 2$ $\bullet^2 \times$	
x = 2	•2 🗸	In this case the candidate has equat	ed zeros
Candidate C			
$f(x) = \frac{1}{4}x^2 - \frac{1}{2}x^2$	x+3 $g(x) = \frac{1}{4}x^2 - \frac{3}{2}x + 5$		
$f'(x) = \frac{1}{2}x - \frac{1}{2}$	$g'(x) = \frac{1}{2}x - \frac{3}{2}$		
x = 1	$x = 3$ \bullet^1		
	$\therefore x = 2$		

Quest	tion	Generic Scheme	Illustrative Scheme	Max Mark
4(b)				
• ³ kno	ow to ir	itegrate	• ³ ∫	
• ⁴ int	erpret l	limits	• 4 $\int_{-\infty}^{2}$	
• ⁵ u	ise 'upp	er - lower'	•5	
			$\int_{0}^{2} \left(\frac{1}{4}x^{2} - \frac{1}{2}x + 3\right) - \left(\frac{3}{8}x^{2} - \frac{9}{4}x + 3\right) dx$	
• ⁶ ir	ntegrate		• $^{6} -\frac{1}{24}x^{3} + \frac{7}{8}x^{2}$ accept unsimplified integral	
• ⁷ sı	ubstitut	e limits	• ⁷ $\left(-\frac{1}{24} \times 2^3 + \frac{7}{8} \times 2^2\right) - 0$	
• ⁸ e	valuate	area between $f(x)$ and $h(x)$	8 10	
● ⁹ st	tate tot	al area	• $\frac{19}{6}$ • $9 \frac{19}{3}$	7
Notes	5:			
2. If	f limits	x = 0 and $x = 2$ appear ex nihilo awa	rd ● ⁴ .	_
4. If	f a cand	idate differentiates at \bullet^6 then \bullet^6 , \bullet' a	and \bullet^8 are not available. However,	• ⁹ is still
5. C	Candidat	e. Tes who substitute at • ⁷ , without atte	mpting to integrate at \bullet^6 , cannot g	ain \bullet^6 , \bullet^7 or
•	⁸ . Howe	ever, \bullet^9 is still available.		,
6. E	vidence	for \bullet^8 may be implied by \bullet^9 .		8
/. ●′ fc	is a str or any o	ategy mark and snould be awarded to previous the strategy applied	or correctly multiplying their solutions working.	ion at •°, or
8. F	or ● ⁵ bo	th a term containing a variable and t	he constant term must be dealt wi	th correctly.
9. Ir	n cases	where $ullet^5$ is not awarded, $ullet^6$ may be g	ained for integrating an expression	of
e	equivale	nt difficulty i.e. a polynomial of at le	east degree two. •° is unavailable f	for the
10. •8	must b	e as a consequence of substituting in	to a term where the power of x is	not equalto
1	or 0.			

Commonly Observed Responses:	
Candidate A - Valid Strategy	Candidate B - Invalid Strategy
Candidates who use the strategy:	For example, candidates who integrate each of
Total Area = Area A + Area B	the four functions separately within an invalid
y = f(x) $y = g(x)$	strategy
A B Then mark as follows:	• ³ ✓
\mathbb{A} Mark Area A for \mathbf{e}^3 to \mathbf{e}^8 then	Gain \bullet^4 if limits correct on
mark Area P for s ³ to s ⁸ and	$\int f(x) = \frac{1}{2} \int f(x) dx$
mark Area D for • to • and	$\int f(x)$ and $\int h(x)$
$\frac{9}{10}$ is such as for some the	or
 adding two equal areas. 	$\int g(x)$ and $\int k(x)$
	J ⁵ is uppusilable
	• is unavailable
	Gain \bullet^6 for calculating either
	$\int f(x)$ or $\int g(x)$
	and
	$\int h(x)$ or $\int k(x)$
	Gain • ⁷ for correctly substituting at least twice Gain • ⁸ for evaluating at least two integrals correctly • ⁹ is unavailable
Candidate C	Candidate D
$\int_{0}^{2} \left(\frac{1}{4}x^{2} - \frac{1}{2}x + 3 - \frac{3}{8}x^{2} - \frac{9}{4}x + 3\right) dx$	$\int_{0}^{2} \left(\frac{1}{4}x^{2} - \frac{1}{2}x + 3 - \frac{3}{8}x^{2} - \frac{9}{4}x + 3\right) dx$
$\int_{0}^{2} \left(-\frac{1}{8} x^{2} - \frac{11}{4} x \right) dx \qquad \bullet^{5} \checkmark$	$\int_{0}^{2} \left(-\frac{1}{8} x^{2} - \frac{11}{4} x + 6 \right) dx \bullet^{5} \times$
$\frac{-1}{24}x^3 - \frac{11}{8}x^2 \qquad \bullet^6 \times$	$-\frac{1}{24}x^3 - \frac{11}{8}x^2 + 6x \qquad \bullet^6 \checkmark 1$
Candidate E	Candidate F
$\int \dots = -\frac{1}{3}$ cannot be negative so $= \frac{1}{3} \bullet^8 \times$	$\int_{0}^{2} \left(\frac{1}{4}x^{2} - \frac{1}{2}x + 3 - \frac{3}{8}x^{2} - \frac{9}{4}x + 3\right) dx$
however, $=-\frac{1}{3}$ so Area $=\frac{1}{3}$ • ⁸	$\int_{0}^{0} (-\frac{1}{8}x^{2} + \frac{1}{4}x) dx \bullet^{5} \checkmark$
	$-\frac{1}{24}x^3 + \frac{7}{8}x^2$ • • •

Question	Generic Scheme	Illustrative Scheme	Max Mark	
5(a)				
• ¹ state cent	re of C ₁	• ¹ (-3,-5)		
\bullet^2 state radius of C ₁		• ² 5		
$ullet{}^3$ calculate distance between centres of C1 and C2		• ³ 20		
• ⁴ calculate r	radius of C ₂	• ⁴ 15	4	
Notes:				
 For •⁴ to be awarded radius of C₂ must be greater than the radius of C₁. Beware of candidates who arrive at the correct solution by finding the point of contact by an invalid strategy. 				
3. • ⁴ is for $\text{Distance}_{c1c2} - r_{c1}$ but only if the answer obtained is greater than r_{c1} .				
Commonly Observed Responses:				

Question	Generic Scheme	Illustrative Scheme	Max Mark		
5(b)					
 ⁵ find ratigion joining certain 	o in which centre of C_3 divides line entres of C_1 and C_2	• ⁵ 3:1			
• ⁶ determine centre of C_3		• (6,7)			
• ⁷ calculate	radius of C_3	• $r = 20$ (answer must be consistent with distance between contros)			
• ⁸ state equ	ation of C_3	• ⁸ $(x-6)^2 + (y-7)^2 = 400$	4		
Notes:					
4. For ● ⁵ ac	cept ratios $\pm 3:\pm 1,\pm 1:\pm 3,\mp 3:\pm 1,\mp 1:$	± 3 (or the appearance of $\frac{3}{4}$).			
 •⁷ is for 1 Where ca However Do not ac For cand for •⁵ and 	 5. •⁷ is for r_{c2}+r_{c1}. 6. Where candidates arrive at an incorrect centre or radius from working then •⁸ is available. However •⁸ is not available if either centre or radius appear ex nihilo (see note 5). 7. Do not accept 20² for •⁸. 8. For candidates finding the centre by 'stepping out' the following is the minimum evidence 				
For \bullet and \bullet : $\begin{array}{c} \bullet^{5} \checkmark \\ \bullet^{6} \times \\ \bullet^{6} \times \\ \hline \text{Correct 'follow through'} \\ \text{using the ratio 1:3} \longrightarrow (0,-1) \\ (-3,-5) \xrightarrow{4} \\ \end{array}$ $\begin{array}{c} \bullet^{5} \checkmark \\ \bullet^{6} \checkmark \\ \hline (-3,-5) \xrightarrow{9} \\ \hline 12 \\ \hline (-3,-5) \xrightarrow{9} \\ \hline 12 \\$			16		
Commonly	Observed Responses:				
Candidate A using the m centre $C_3 = 0$ radius of C_3 $(x-3)^2 + (y)$	A iid-point of centres: $_{5} \times _{(3,3)}$ = 20 $_{-3)^{2}} = 400$ $_{5} \times _{2}$ $_{6} \checkmark 2$ $_{8} \checkmark 1$	Candidate B $C_1 = (-3, -5)$ $C_2(9, 11)$ $C_3 = \frac{1}{4} \begin{pmatrix} 0 \\ -4 \end{pmatrix}$ $C_3 = (0, -1)$ $x^2 + (y+1)^2 = 400$	r = 20 ote 4		
Candidate (C - touches C_1 internally only	Candidate D - touches C_2 interr	nally only		
• ⁵ × • ⁶ centre (• ⁷ radius (• ⁸ $(x-3)^2$	$C_3 = (3,3) \times$ of $C_3 = \text{radius of } C_2 = 15 \checkmark 1$ $+ (y-3)^2 = 225 \checkmark 1$	• ⁵ × • ⁶ centre $C_3 = (3,3) \times$ • ⁷ radius of $C_3 = $ radius of $C_1 = 5$ • ⁸ $(x-3)^2 + (y-3)^2 = 25$ \checkmark 1	√1]		
Candidate E	- centre C_3 collinear with C_1, C_2				
\bullet^6 e.g. centre	$e C_3 = (21, 27) \times$				
•' radius of $x^8(x-21)^2$ +	$C_3 = 45$ (touch C_1 internally only) $\checkmark 1$ $(y-27)^2 = 2025$ $\checkmark 1$				

Question	Generic Scheme	Illustrative Scheme	Max Mark		
6(a)					
• ¹ Expands		• $\mathbf{p} \cdot \mathbf{q} + \mathbf{p} \cdot \mathbf{r}$			
• ² Evaluate p.q		-2 1			
	-	• 4 $\frac{1}{2}$			
• ³ Completes evaluation		-3 $+0$ $+1$			
		•+ $0 = 4\frac{1}{2}$	3		
Notes:					
1. For p	$(\mathbf{q}+\mathbf{r}) = \mathbf{p}\mathbf{q} + \mathbf{p}\mathbf{r}$ with no other worki	ng \bullet^1 is not available.			
Commonly O	bserved Responses:				
6(b)			T		
• ⁴ correct ex	pression	• $\mathbf{q} + \mathbf{p} + \mathbf{r}$ or equivalent	1		
6(c)					
• ⁵ correct su	bstitution	• ⁵ - q.q + q.p + q.r			
• ⁶ start evalu	uation	$\bullet^6 -9 + \dots + 3 \mathbf{r} \cos 30^\circ = 9\sqrt{3} - \frac{9}{2}$			
\bullet^7 find expre	ssion for r	r^{7} $ r = 3\sqrt{3}$			
		$ \mathbf{r} = \frac{1}{\cos 30}$	3		
Notes:					
2. Award	$\mathbf{d} \bullet^{5} \mathbf{for} -\mathbf{q}^{2} + \mathbf{q} \cdot \mathbf{p} + \mathbf{q} \cdot \mathbf{r}$				
Commonly O	bserved Responses:				
Candidate A		Candidate B			
- q.q + q.p + q	$\mathbf{r} = 9\sqrt{3} - \frac{9}{2} \qquad \mathbf{\bullet}^5 \checkmark$	$-q.q+q.p+q.r=9\sqrt{3}-\frac{9}{7}$	✓		
$-9+\frac{9}{2}+3 \mathbf{r} $	$\cos 150^\circ = 9\sqrt{3} - \frac{9}{2} \qquad \bullet^7 \checkmark 1$	$-9 + \frac{9}{2} + 3 \mathbf{r} \cos 30^{\circ} = 9\sqrt{3} - \frac{9}{2}$ $ \mathbf{r} = 6$			
$ \mathbf{r} = -\frac{1}{2}$	$\frac{3\sqrt{3}}{\cos(150)}$				

Question	Generic Scheme	Illustrative Scheme Max Ma			
7(a)		•			
 ¹ integrate a term ² complete integration with constant 		• $\frac{3}{2}\sin 2x$ OR x • $x+c$ $\frac{3}{2}\sin 2x+c$	2		
Notes:			-		
Commonly O	bserved Responses:				
7(b)					
 ³ substitute ⁴ substitute 	for cos 2 <i>x</i> for 1 and complete	$3(\cos^{2} x - \sin^{2} x)$ or(sin ² x + cos ² x) • ⁴ (sin ² x + cos ² x) = 4cos ² x - 2sin ² x	2		
Notes:			-		
 Any valid substitution for cos 2x is acceptable for •³. Candidates who show that 4cos² x-2sin² x = 3cos 2x+1 may gain both marks. Candidates who quote the formula for cos 2x in terms of A but do not use in the context of the question cannot gain •³. 					
Commonly O	bserved Responses:				
Candidate A $3\cos 2x + 1 =$	$(2\cos^2 x - 1) + (2\cos^2 x - 1) + (1 - 2\sin^2 x - 1)$	$x^{2}x)+1$ a^{3}			
Candidate B	$=4\cos x - 2\sin x$				
$4\cos^2 x - 2\sin^2 x$	$n^{2} x = 2(\cos 2x + 1) - (1 - \cos 2x)$				
7(c)	$=3\cos 2x+1$				
7(0)		1			
• ⁵ interpret l	ink	$\bullet^5 \qquad -\frac{1}{2}\int \dots$			
• ⁶ state resu	lt	• ⁶ $-\frac{3}{4}\sin 2x - \frac{1}{2}x + c$	2		
Notes:					
Commonly O	bserved Responses:				
Candidate A	2				
$\int \sin^2 x - 2\cos \theta$	$s^2 x dx$				
$=\int (3\cos 2x +$	(+1) $dx \bullet^5 \times$				
$\left \frac{3}{2}\sin 2x + x + \right $	<i>c</i> • ⁶ ×				

8. • use compound angle formula • use compare coefficients • process for k • process for a • compare sepression for h to 100 • write in standard format and attempt to solve • solve equation for 1.5t • process solutions for t • $t = 1.5t = 0.39479) + 65 = 100$ • $t = 1.5t - 0.39479) + 65 = 100$ • $t = 1.5t - 0.39479) = \frac{35}{39}$ $\Rightarrow 1.5t - 0.39479) = \frac{35}{39}$ $\Rightarrow 1.5t - 0.39479 = sin^{-1}(\frac{35}{39})$ • $t = 1.006$ and $t = 1.615$ 8	Question	Generic Scheme		Illustrative Scheme			Max Mark
• use compound angle formula • use compare coefficients • process for k • process for a • process for a • process for a • quates expression for h to 100 • write in standard format and attempt to solve • solve equation for 1.5t • process solutions for t • a process solutions for t • a process solutions for t • b process solutions for t • b process solutions for t • c process process and process an	8.						
• ³ process for k • ⁴ process for a • ⁵ equates expression for h to 100 • ⁶ write in standard format and attempt to solve • ⁷ solve equation for 1 · 5t • ⁸ process solutions for t • ^a $t = 39$ • ^b $t = 0.39479rad or 22 · 6^{\circ}$ • ⁵ $39 \sin(1 · 5t - 0 · 39479) + 65 = 100$ • ⁶ $\sin(1 · 5t - 0 · 39479) = \frac{35}{39}$ $\Rightarrow 1 · 5t - 0 · 39479 = \sin^{-1}\left(\frac{35}{39}\right)$ $\Rightarrow 1 · 5t - 0 · 39479 = \sin^{-1}\left(\frac{35}{39}\right)$ and 2 · 422 • ⁸ $t = 1 · 006$ and 1 · 615 8	• ¹ use com • ² compare	pound angle formula coefficients	• ¹ • ²	$k \sin 1 \cdot 5t \cos a = 36,$ explicitly	$\frac{a-k\cos 1}{k\sin a} = 1$	•5 <i>t</i> sin <i>a</i> 5 stated	
• equates expression for <i>t</i> to for • write in standard format and attempt to solve • solve equation for 1.5 <i>t</i> • process solutions for <i>t</i> • $\frac{1}{39}\sin(1.5t-0.39479)+65=100}{}_{.6}\sin(1.5t-0.39479)=\frac{35}{39}}{}_{.39}$ $\Rightarrow 1.5t-0.39479=\sin^{-1}\left(\frac{35}{39}\right)$ $\frac{1}{5t}=1.508}$ and 2.422 • $\frac{1}{5t}=1.508}$ and 2.422 • $\frac{1}{5t}=1.508}$ and 1.615 8	• ³ process f • ⁴ process f	for k for a	• ³ • ⁴	k = 39 $a = 0.39479$	rad or 2	22 · 6°	
• ⁸ process solutions for t • ⁸ process solutions for t • ⁸ $t = 1.006$ and 1.615 8	 equates write in solve solve equates 	expression for <i>n</i> to 100 standard format and attempt to uation for $1.5t$	39 • ⁶	$9\sin(1\cdot 5t - 0\cdot 3)$ $\sin(1\cdot 5t - 0\cdot 3)$	39479)+ 39479)+	-65 = 100 = $\frac{35}{39}$	
• $t = 1.006$ and 1.615 • $t = 1.006$ and 1.615 • $t = 1.006$ and 1.615	• ⁸ process s	solutions for <i>t</i>		$\Rightarrow 1 \cdot 5t - 0 \cdot 3$	9479=s	$\sin^{-1}\left(\frac{35}{39}\right)$	
• ⁸ $t = 1.006$ and 1.615 8			•	$1 \cdot 5t = 1 \cdot 5$	508 and	• 2·422	
Notes:	Notes:		•	t = 1.006	and	1.615	8

1. Treat $k \sin 1.5t \cos a - \cos 1.5t \sin a$ as bad form only if the equations at the \bullet^2 stage both contain k.

- 2. $39\sin 1.5t\cos a 39\cos 1.5t\sin a$ or $39(\sin 1.5t\cos a \cos 1.5t\sin a)$ is acceptable for \bullet^1 and \bullet^3 .
- 3. Accept $k\cos a = 36$ and $-k\sin a = -15$ for \bullet^2 .
- 4. •² is not available for $k \cos 1.5t = 36$ and $k \sin 1.5t = 15$, however, •⁴ is still available.
- 5. •³ is only available for a single value of k, k > 0.
- 6. •⁴ is only available for a single value of a.
- 7. The angle at \bullet^4 must be consistent with the equations at \bullet^2 even when this leads to an angle outwith the required range.
- 8. Candidates who identify and use any form of the wave equation may gain \bullet^1 , \bullet^2 and \bullet^3 , however, \bullet^4 is only available if the value of a is interpreted for the form $k \sin(1 \cdot 5t a)$.
- 9. Candidates who work consistently in degrees cannot gain •⁸.
- 10. Do not penalise additional solutions at \bullet^8 .
- 11. On this occasion accept any answers which round to 1.0 and 1.6 (2 significant figures required).

Commonly Observed Responses:					
Response 1: Missing information	in working.				
Candidate A	Candie	date B	Candidate C		
$39\cos a = 36$	$\cos a = 36$	• ¹ •	$k\sin 1\cdot 5t\cos a - k\cos 1\cdot 5t\sin a$		
$-39\sin a = -15$	$\sin a = 15$	• ² ×	$k\cos a = 36$, $k\sin a = 15$		
$\tan a = \frac{15}{2}$	$\tan a = \frac{15}{36}$	$\bullet^3 \wedge$	k = 39 or -39		
36 ●4 ✓	a = 0.39479 rg	$\bullet^{+} \times$	$\tan a = \frac{15}{4}$ $\bullet^3 \times$		
$a = 0.39479rad \text{ or } 22.6^{\circ}$		not satisfy	36 $\mathbf{\bullet}^{4} \mathbf{\times}$		
	equat	ions at \bullet^2	$a = 0.39479rad \text{ or } 22.6^{\circ}$		
			or		
			$a = 3.53638$ rad or 202.6°		
Response 2: Correct expansion of $k \sin(x + a)^\circ$ and possible errors for \bullet^2 and \bullet^4					
Candidate D	Candio	date E	Candidate F		
$k\cos a = 36$	$k\cos a = 15$	2	$k\cos a = 36$		
$k\sin a = 15$	<i>k</i> sin <i>a</i> = 36	•-×	$k\sin a = -15$ $\bullet^- \times$		
$\tan a = \frac{36}{4}$ $\bullet^4 \times$	$\tan a = \frac{36}{36}$	• ⁴ 1	$\tan a = \frac{-15}{4}$		
$\frac{\tan \alpha - \frac{1}{15}}{15}$	$\frac{\tan a}{15}$		$\tan a = \frac{1}{36}$		
$a = 1.176rad \text{ or } 67.4^{\circ}$	a = 1.176rac	d or $67 \cdot 4^{\circ}$	$a = 5.888rad \text{ or } 337.4^{\circ}$		
Response 3: Labelling incorrect,	$\sin\left(\mathbf{A}-\mathbf{B}\right)=\sin A$	$A \cos B - \cos A \sin \theta$	B from formula list.		
Candidate G	Candio	date H	Candidate I		
$k\sin A \cos B - k\cos A \sin B$	$k \sin A \cos B -$	kcos A sin B	$k \sin A \cos B - k \cos A \sin B$		
$k\cos a = 36$	$k\cos(1.5t) = 36$	1	$k \cos B = 36$		
$k \cos a = 50 \qquad \qquad \checkmark \qquad $	k = 50	• ¹ × 2	$k \sin B = 15$ $e^2 \sqrt{1}$		
15 NSIII <i>a</i> –15	$k\sin 1.5i = 15$	•- ×			
$\tan a = \frac{15}{36} \qquad \bullet^4 \checkmark$	$\tan 1.5t = \frac{15}{36}$	● ⁴ √ 1	$\tan B = \frac{15}{36} \qquad \bullet^4 \checkmark 1$		
$a = 0.39479rad \text{ or } 22.6^{\circ}$	$1 \cdot 5t = 0.39479$	rad or $22 \cdot 6^{\circ}$	B = $0.39479rad$ or 22.6°		
Candidate J		Candidate K			
$39\sin(1.5t - 0.395) = 100$	• ⁵ ×	$39\sin(1.5t - 0.5)$	395) = 100		
100			• ⁶ ×		
$\sin(1.5t - 0.395) = \frac{100}{39}$			• ×		
	• ⁶	$1 \cdot 5t - 0 \cdot 395 = s$	$\sin^{-1}\frac{c}{100}$ • ×		
$1 \cdot 5t - 0 \cdot 395 = \sin^{-1} \frac{1}{39}$	• 7 ×		100		
	• ⁸ ×				

[END OF MARKING INSTRUCTIONS]