Paper 2

-	stion	Generic Scheme		Illustrative Scheme	Max Mark		
1	a		1		-		
\bullet^1	SS	find gradient of AB	•1	$m_{AB} = 1$			
• ²	pd	find perpendicular gradient	•2	$m_{perp} = -1$ stated or implied by • ⁴			
•3	pd	find midpoint of AB	•3	(4,1) stated or implied by \bullet^4			
•4	pd	obtain equation	•4	y-1=-1(x-4)	4		
Not		y available as a consequence of usin		rpendicular gradient and a midpoint.			
2.	The grad	lient must appear in simplified form					
Con	ımonly	Observed Responses:					
Can	didate	Α					
m _{AB}	=-1	$\bullet^1 X$					
		•2 💉					
		•3 🗸					
		4) $\Rightarrow y = x - 3 \bullet^4 \checkmark$					
Lead	ling to p	part (b)					
y-x y+x	x = -3 $2x = 6$	•5 💉					
	$y-x=-3$ $y+2x=6$ $(3,0)$ \bullet^{6}						
(3,0)	• ° 🔨					

Question	Generic Scheme	Illustrative Scheme	Max Mark					
$\begin{array}{c c} 1 & b \\ \bullet^5 & ss \end{array}$	know to solve simultaneously	• ⁵ $y+2x=6$ y+x=5	-					
• ⁶ pd	solve correctly for <i>x</i> and <i>y</i>	• ⁶ $x=1, y=4$	2					
Commonl	y Observed Responses:							
Candidate	e B							
Part (a) y-	Part (a) $y-1=-1(x-4)$ • ⁴ \checkmark							
-	=-x+3 error							
Part (b) $y = x = 3, y = 0$	$+2x = 6 \text{ and } y + x = 3 \bullet^5 \checkmark$	rrect strategy used, pd mark not available						
1 c								
\bullet^7 ss	know and use $m = \tan \theta$	\bullet^7 $\tan\theta = -2$	-					
• ⁸ pd	calculate angle	• ⁸ 116.6°	2					
		accept 117° or 2.03 radians						
Commonl	y Observed Responses:							
Candidate		Candidate D						
$m_{\rm AT} = -\frac{1}{2}$								
base angle	$e = 26 \cdot 6^{\circ}$ • ⁷ X	$m_{\rm AT} = 2$ $\bullet^7 X$						
	$=90+26\cdot 6=116\cdot 6^{\circ}$ • ⁸ X	angle = $\tan^{-1}(2) = 63 \cdot 4^{\circ} \bullet^{8} \checkmark$						
Candidate	e E:							
Part (a)		Part (b)						
$m_{\rm AB} = \frac{2-1}{5-1}$	$\frac{0}{3} = \frac{2}{8} = \frac{1}{4} \bullet^1 X$	$y+4x-5=0y+2x+6=0 \qquad \bullet^5 X \qquad \Rightarrow \qquad y+2x=-6y+4x=-5$	● ⁶ X					
$m_{\rm perp} = -4$	• ² ×	$\Rightarrow 2x = 1, x = \frac{1}{2}, y = -7$						
Midpoint of $y-1=-4$ y+4x-5	of AB (4, 1) $\bullet^3 \checkmark$ (x-1) $\bullet^4 \checkmark$	 ⁵ is a strategy mark. The correct strategy is to the given equation with the equation from simultaneously. ⁵ is not awarded as the give equation has not been used. The equation obtained at stage •⁴, has been 	part (a) ven					
		rearranged incorrectly in part (b). The next • ⁶ , is therefore not awarded.	pd mark,					

Que	estion	Generic Scheme		Illustrative Scheme	Max Mark
2					
\bullet^1	SS	know to and differentiate	• ¹	$4x^3 - 6x^2$	
• ²	ic	find gradient	•2	8	
• ³	pd	find y-coordinate	•3	5	
• ⁴	ic	state equation of tangent	•4	y-5=8(x-2)	4
Not	tes:				
1.	 ⁴ is only available if an attempt has been made to find the gradient from differentiation ar calculating the y-coordinate by substitution into the original equation. 				

Commonly Observed Responses:

Candidate A •¹ \checkmark •² \checkmark •³ \checkmark using y = mx + c x = 2, y = 5, m = 8 $\Rightarrow 5 = 8 \times 2 + c$ $\Rightarrow c = -11$ •⁴ \checkmark y = 8x - 11

Question	Generic	Scheme	Illustrative Scheme		Max Mark
$\begin{array}{c c} 3 & \mathbf{a} \\ \bullet^1 & \mathrm{ic} \\ \bullet^2 & \mathrm{pd} \end{array}$	interpret notation a correct expression of the second seco		• ¹ $f(x+3)$ stated or implied • ² $=(x+3)(x+2)+q$ OR $=(x+3)^2-(x+3)+q$ or equivalent	$1 \text{ by } \bullet^2$	2
Notes:					
1. Special	Case: \bullet^1 is for subs	tituting $(x+3)$ for	x thus, treat $x+3(x+3-1)+q$ as b	bad form.	
Commonly	y Observed Respon	ses:	1		
Candidate	e A		Candidate B		
	$x+3(x+3-1)+q$ $x^2+5x+6+q$		f(g(x)) = x + 3(x+3-1) + q = 4x+6+q	• ¹ \checkmark • ² \times	
Candidate	e C		Candidate D		
=(x	$x+3(x+3-1)+q +3)^{2}-x+3+q +5x+6+q=0$	• ¹ \checkmark • ² \checkmark • ³ \checkmark	f(g(x)) = (x+3)(x+3-1)+q = (x+3) ² -x+3+q x ² +5x+12+q=0	• ¹ ✓ • • ³ X	2 🗸
Candidate	E: using $g(f(x))$				
part (a)			part (b)		
	g(x(x-1)+q) = $x(x-1)+q+3$	• ¹ X • ²	$x^{2} - x + q + 3 = 0$ $b^{2} - 4ac = (-1)^{2} - 4 \times 1 \times (q + 3)$ 1 - 4q - 12 = 0 $q = -\frac{11}{4}$	•3 ** •4 ** •5 ** •6 **	(eased)

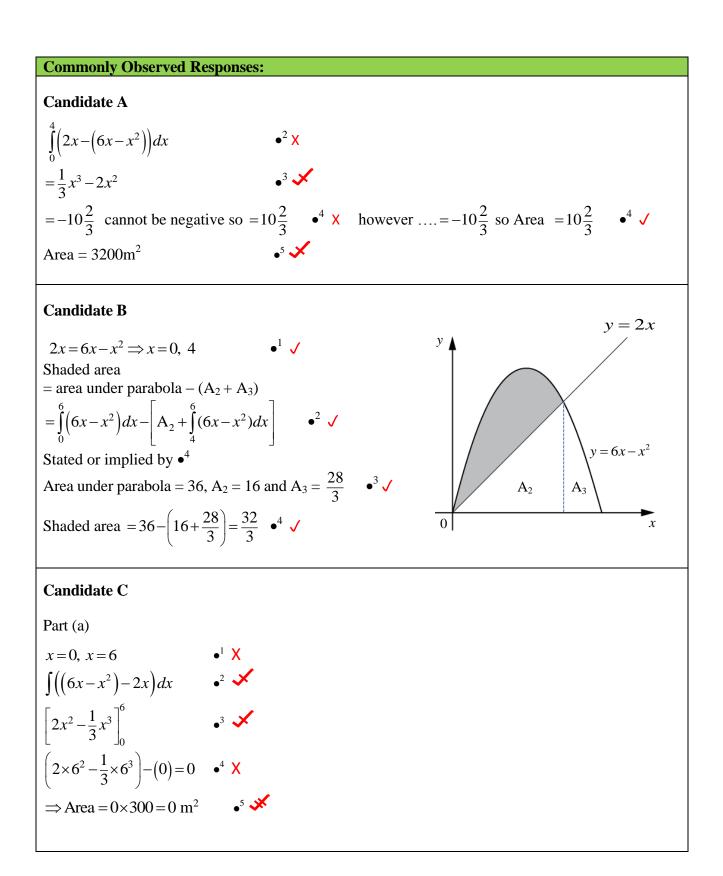
	estion	Generic Scheme		Illustrative Scheme	Max Mark
3	b				
		Method 1		Method 1	
•3	pd	write in standard quadratic form	•3	$x^2 + 5x + 6 + q = 0$	
•4	ic	use discriminant	•4	$b^2 - 4ac = 5^2 - 4 \times 1 \times (6+q)$	
• ⁵	pd	simplify and equate to zero	• ⁵	$\Rightarrow 25 - 24 - 4q = 0$	
• ⁶	pd	find value of q	•6	$q = \frac{1}{4}$	4
		Method 2		Method 2	
•3	pd	write in standard quadratic form	• ³	$x^2 + 5x + 6 + q = 0$	
• ⁴	ic	complete the square	• ⁴	$\left(x + \frac{5}{2}\right)^2 - \frac{25}{4} + 6 + q = 0$	
• ⁵	pd	equate to zero	• ⁵	$-\frac{25}{4}+6+q=0$	
• ⁶	pd	find value of q	•6	$q = \frac{1}{4}$	
		Method 3		Method 3	
•3	pd	write in standard quadratic form	•3	$f(g(x)) = x^2 + 5x + 6 + q = 0$	
•4	ic	geometric interpretation	•4	equal roots so touches x-axis at SP	
• ⁵	pd	differentiates to obtain <i>x</i>	•5	$\Rightarrow \frac{dy}{dx} = 2x + 5 = 0$	
•6	pd	find value of <i>q</i>	•6	$x = -\frac{5}{2}$ $\frac{25}{4} - \frac{25}{2} + 6 + q = 0$ $q = \frac{1}{4}$	
Not	es:				
3. I 4.	n Meth Candic Metho	penalise the omission of $=0$ at \bullet^3 . nod 1 $a=1$, $b=5$, $c=6+q$ is sufficient lates who assume $=0$ and follow the ds 1 and 2 $=0$ must appear at \bullet^4 or e^3	rough t • ⁵ for	• a correct value of q , • ⁶ is still availabl • ⁵ to be awarded.	e. In

5. If the expression obtained at \bullet^3 is not a quadratic then \bullet^3 , \bullet^4 , \bullet^5 and \bullet^6 are not available.

Qu	estion	Generic Scheme		Illustrative Scheme	Max Mark	
	U	ut this question treat coordinates writte	n as c	omponents, and vice versa, as	bad	
for 4	m. a					
• ¹		states as ardinates of C	_1	0(11.12.6)		
• • ²	pd	states coordinates of C	•	C(11,12,6) D(8,8,4)	2	
	pd	states coordinates of D	•2	D(8,8,4)	2	
Not	tes:					
	-	$x = 11$, $y = 12$ and $z = 6$ for \bullet^1 and $x = 8$,	•		2	
		ndidates who write the coordinates as Cart	esian t	riples and omit brackets in both	cases, \bullet^2	
4	1s not a b	wailable.			[
• ³	pd	finds \overrightarrow{CB}		(0)		
	pu		• ³			
				(-4)		
•4	pd	finds $\overrightarrow{\text{CD}}$		(-3)	2	
	pu		• ⁴			
				$\begin{pmatrix} -2 \end{pmatrix}$		
Not	tes:					
3.	For car	ndidates who find both $\overrightarrow{\mathrm{BC}}$ and $\overrightarrow{\mathrm{DC}}$, only	4 is av	vailable (repeated error).		
	1				ſ	
4	C		1			
• ⁵	SS	know to use scalar product applied to	• ⁵	$\cos \hat{BCD} = \frac{CB.CD}{ \overrightarrow{CP} \overrightarrow{CP} }$		
		the correct angle		CBCD		
				stated or implied by \bullet^9		
•6	pd	find scalar product	• ⁶	40		
•7	pd	find $ \overrightarrow{CB} $	•7	$\sqrt{80}$		
•8	pd	find $ \overrightarrow{CD} $	•8	$\sqrt{29}$		
•9	pd	find angle	•9	33.9°	5	
Not	tes:					
4.	\bullet^5 is no	t available for candidates who choose to ev	aluate	an incorrect angle.		
		pt 33.8 to 34 degrees or 0.59 to 0.6 radians		C		
		idates do not attempt \bullet^9 , then \bullet^5 is only ava	ilable	if the formula quoted relates to th	e	
		ng in the question.				
	7. \bullet^9 is only available as a result of using a valid strategy.					
8.	• ⁵ is no	t available for candidates who write $\cos\theta$ =	$=\frac{4}{\sqrt{80}}$	$\frac{10}{\sqrt{29}}$. Some reference to the labe	elling of	
	the diag	gram must be made within their solution to	part (c), to indicate they are attempting	to find	
	the cor	rect angle.				

Commonly Observed Responses:	
Candidate A: Cosine Rule	Candidate B
$\cos \hat{BCD} = \frac{CB^2 + CD^2 - BD^2}{2 \times CB \times CD} \qquad \bullet^5 \checkmark$	$\cos \hat{BCD} = \frac{\overrightarrow{BC.CD}}{ \overrightarrow{BC} \times \overrightarrow{CD} } \qquad \bullet^{5} X$
$CB = \sqrt{80}, CD = \sqrt{29}, BD = \sqrt{29} \bullet^6 \checkmark \bullet^7 \checkmark \bullet^8$	
33.9° or 0.59 radians 9°	$ \overrightarrow{BC} = \sqrt{80} , \overrightarrow{CD} = \sqrt{29} \bullet^7 \checkmark \bullet^8 \checkmark$
	$\overrightarrow{BC.CD} = -40$ $\bullet^6 \checkmark$ $ \overrightarrow{BC} = \sqrt{80}$, $ \overrightarrow{CD} = \sqrt{29}$ $\bullet^7 \checkmark \bullet^8 \checkmark$ $146 \cdot 1^\circ$ or $2 \cdot 55$ radians $\bullet^9 \checkmark$
Candidate C	Candidate D
$\cos \hat{BOD} = \frac{\overrightarrow{OB.OD}}{ \overrightarrow{OB} \times \overrightarrow{OD} } \qquad \bullet^5 X$	$\cos C \hat{B} D = \frac{\overrightarrow{BC.BD}}{\left \overrightarrow{BC}\right \times \left \overrightarrow{BD}\right } \qquad \bullet^{5} X$
$\overrightarrow{OB.OD} = 128 \qquad \qquad \bullet^{6} \checkmark$ $\overrightarrow{OB} = \sqrt{141} , \overrightarrow{OD} = 12 \qquad \bullet^{7} \checkmark \bullet^{8} \checkmark$	$\overrightarrow{BC}.\overrightarrow{BD} = 40 \qquad \qquad \bullet^{6} \checkmark$ $ \overrightarrow{BC} = \sqrt{80} , \overrightarrow{BD} = \sqrt{29} \qquad \bullet^{7} \checkmark \bullet^{8} \checkmark$
26·1° or 0·46 radians $\bullet^9 \checkmark$	33.9° or 0.59 radians $\bullet^9 \checkmark$
Candidate E	Candidate F
$\cos B\hat{O}C = \frac{\overrightarrow{OB.OC}}{\left \overrightarrow{OB}\right \times \left \overrightarrow{OC}\right } \qquad \bullet^{5} X$	$\cos \hat{BCD} = \frac{\overrightarrow{BCDC}}{\left \overrightarrow{BC}\right \times \left \overrightarrow{DC}\right } \qquad \bullet^{5} \checkmark$
$\overrightarrow{OB.OC} = 181 \qquad \qquad \bullet^{6} \checkmark$ $\overrightarrow{OB} = \sqrt{141} , \overrightarrow{OC} = \sqrt{301} \qquad \bullet^{7} \checkmark \bullet^{8} \checkmark$	this is an acceptable form for the scalar product.
$28 \cdot 5^{\circ}$ or $0 \cdot 50$ radians $\bullet^9 \checkmark$	

	estion	Generic Schen	ne	Illustrative Scheme	Max Mark		
5				1			
• ¹	SS	start to integrate		• $\frac{1}{\frac{1}{2}}(\dots)^{\frac{1}{2}}$			
• ²	pd	complete integration		• ² × $\frac{1}{3}$			
•3	pd	process limits		• ³ $\frac{2}{3}(3t+4)^{\frac{1}{2}}-\frac{2}{3}(3(4)+4)^{\frac{1}{2}}$			
•4	pd	start to solve equation		• ⁴ $(3t+4)^{\frac{1}{2}} = 7$ • ⁵ $t = 15$			
• ⁵	pd	solve for <i>t</i>		• ⁵ $t = 15$	5		
No	tes:						
2. 3. 4. 5.	4. The integral obtained must contain a non integer power for \bullet^4 and \bullet^5 to be available. 5. Do not penalise the inclusion of '+c'.						
Co	mmonly	Observed Responses:					
Ce	ndidata	<u> </u>					
Ud.	nalate	A: Forgetting the $\frac{1}{3}$		Candidate B			
_	$(3x+4)^{\frac{1}{2}}$	5	$\bullet^1 \checkmark \bullet^2 X$				
2($(3x+4)^{\frac{1}{2}}$	5	•3 💉	$\begin{bmatrix} \frac{1}{6}(3x+4)^{\frac{1}{2}} \end{bmatrix}_{4}^{t} = 2 \qquad \bullet^{1} \times \bullet^{2} \checkmark$ $\begin{pmatrix} \frac{1}{6}(3t+4)^{\frac{1}{2}} \end{pmatrix} - \begin{pmatrix} \frac{1}{6}(3(4)+4)^{\frac{1}{2}} \end{pmatrix} = 2$	•3 ×		
	$(3x+4)^{\frac{1}{2}}$ $(3t+4)^{\frac{1}{2}}$	$\int_{4}^{t} = 2$ $\int -\left(2(3(4)+4)^{\frac{1}{2}}\right) = 2$	•3 💉	$\left[\frac{1}{6}(3x+4)^{\frac{1}{2}}\right]_{4}^{t} = 2 \qquad \bullet^{1} X \bullet^{2} I$	• ³ •		
	$(3x+4)^{\frac{1}{2}}$ $(3t+4)^{\frac{1}{2}}$ $+4)^{\frac{1}{2}} =$	$\int_{4}^{t} = 2$ $\int -\left(2(3(4)+4)^{\frac{1}{2}}\right) = 2$	•3 💉	$\begin{bmatrix} \frac{1}{6}(3x+4)^{\frac{1}{2}} \end{bmatrix}_{4}^{t} = 2 \qquad \bullet^{1} \times \bullet^{2} \checkmark$ $\begin{pmatrix} \frac{1}{6}(3t+4)^{\frac{1}{2}} \end{pmatrix} - \begin{pmatrix} \frac{1}{6}(3(4)+4)^{\frac{1}{2}} \end{pmatrix} = 2$	• ³ • •		
$\begin{bmatrix} 2(t) \\ 2(t) \\ (3t) \\ t = t \end{bmatrix}$	$(3x+4)^{\frac{1}{2}}$ $(3t+4)^{\frac{1}{2}}$ $+4)^{\frac{1}{2}} =$	$\begin{bmatrix} 1 \\ -1 \\ 2(3(4) + 4)^{\frac{1}{2}} \end{bmatrix} = 2$ 5	• ³ ×	$\begin{bmatrix} \frac{1}{6}(3x+4)^{\frac{1}{2}} \end{bmatrix}_{4}^{t} = 2 \bullet^{1} X \bullet^{2} \checkmark$ $\begin{pmatrix} \frac{1}{6}(3t+4)^{\frac{1}{2}} \end{pmatrix} - \begin{pmatrix} \frac{1}{6}(3(4)+4)^{\frac{1}{2}} \end{pmatrix} = 2$ $(3t+4)^{\frac{1}{2}} = 16$			
$\begin{bmatrix} 2(t) \\ 2(t) \\ (3t) \\ t = \end{bmatrix}$	$(3x+4)^{\frac{1}{2}}$ $(3t+4)^{\frac{1}{2}}$ $+4)^{\frac{1}{2}} = \frac{7}{\frac{1}{2}}$ ndidate $\frac{3x+4)^{\frac{1}{2}}}{\frac{1}{2}}$	$\begin{bmatrix} 1 \\ -1 \\ 2(3(4) + 4)^{\frac{1}{2}} \end{bmatrix} = 2$ 5 C $(3) \begin{bmatrix} 1 \\ -1 \end{bmatrix}_{4}^{t} = 2$ \bullet^{1}	• ³ ×	$\begin{bmatrix} \frac{1}{6}(3x+4)^{\frac{1}{2}} \end{bmatrix}_{4}^{t} = 2 \bullet^{1} \times \bullet^{2} \checkmark$ $\begin{pmatrix} \frac{1}{6}(3t+4)^{\frac{1}{2}} \end{pmatrix} - \begin{pmatrix} \frac{1}{6}(3(4)+4)^{\frac{1}{2}} \end{pmatrix} = 2$ $(3t+4)^{\frac{1}{2}} = 16$ $t = 84$			
$\begin{bmatrix} 2(t) \\ 2(t) \\ (3t) \\ t = \end{bmatrix}$	$(3x+4)^{\frac{1}{2}}$ $(3t+4)^{\frac{1}{2}}$ $(3t+4)^{\frac{1}{2}} = \frac{1}{7}$ ndidate	$\begin{bmatrix} 1 \\ -1 \\ 2(3(4) + 4)^{\frac{1}{2}} \end{bmatrix} = 2$ 5 C $(3) \begin{bmatrix} 1 \\ -1 \end{bmatrix}_{4}^{t} = 2$ \bullet^{1}	• ³ • •	$\begin{bmatrix} \frac{1}{6}(3x+4)^{\frac{1}{2}} \end{bmatrix}_{4}^{t} = 2 \bullet^{1} \times \bullet^{2} \checkmark$ $\begin{pmatrix} \frac{1}{6}(3t+4)^{\frac{1}{2}} \end{pmatrix} - \begin{pmatrix} \frac{1}{6}(3(4)+4)^{\frac{1}{2}} \end{pmatrix} = 2$ $(3t+4)^{\frac{1}{2}} = 16$ $t = 84$ Candidate D	•5 💉		
$\begin{bmatrix} 2(t) \\ 2(t) \\ (3t) \\ t = t \end{bmatrix}$	$(3x+4)^{\frac{1}{2}}$ $(3t+4)^{\frac{1}{2}}$ $+4)^{\frac{1}{2}} = \frac{7}{\frac{1}{2}}$ ndidate $\frac{5x+4)^{\frac{1}{2}}}{\frac{1}{2}} \approx (3x+4)^{\frac{1}{2}}$	$\begin{bmatrix} 1 \\ -1 \\ 2(3(4) + 4)^{\frac{1}{2}} \end{bmatrix} = 2$ 5 C $(3) \begin{bmatrix} 1 \\ -1 \end{bmatrix}_{4}^{t} = 2$ \bullet^{1}	• ³ • •	$\begin{bmatrix} \frac{1}{6}(3x+4)^{\frac{1}{2}} \end{bmatrix}_{4}^{t} = 2 \bullet^{1} \times \bullet^{2} \checkmark$ $\begin{pmatrix} \frac{1}{6}(3t+4)^{\frac{1}{2}} \end{pmatrix} - \begin{pmatrix} \frac{1}{6}(3(4)+4)^{\frac{1}{2}} \end{pmatrix} = 2$ $(3t+4)^{\frac{1}{2}} = 16$ $t = 84$ Candidate D $\begin{bmatrix} -\frac{3}{2}(3x+4)^{-\frac{3}{2}} \end{bmatrix}_{4}^{t} = 2$	• ⁵ • ² X		
$\begin{bmatrix} 2(\\ (3t) \\ t = \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \\$	$(3x+4)^{\frac{1}{2}}$ $(3t+4)^{\frac{1}{2}}$ $+4)^{\frac{1}{2}} = \frac{7}{\frac{1}{2}}$ ndidate $\frac{5x+4)^{\frac{1}{2}}}{\frac{1}{2}} \approx (3x+4)^{\frac{1}{2}}$	$\int_{4}^{t} = 2$ $\int_{4}^{t} = 2$ $\int_{5}^{t} -\left(2(3(4) + 4)^{\frac{1}{2}}\right) = 2$ \int_{5}^{5} C $(3) \int_{4}^{t} = 2$ $\int_{4}^{t} = 2$ $\int_{4}^{t} = 2$ $\int_{4}^{t} = 2$ $\int_{4}^{t} -\left[\frac{2}{3}(3(4) + 4)^{\frac{1}{2}}\right] = 2$	•3 × •4 × •5 ×	$\begin{bmatrix} \frac{1}{6}(3x+4)^{\frac{1}{2}} \end{bmatrix}_{4}^{t} = 2 \bullet^{1} X \bullet^{2} \checkmark$ $\begin{pmatrix} \frac{1}{6}(3t+4)^{\frac{1}{2}} \end{pmatrix} - \begin{pmatrix} \frac{1}{6}(3(4)+4)^{\frac{1}{2}} \end{pmatrix} = 2$ $(3t+4)^{\frac{1}{2}} = 16$ $t = 84$ Candidate D $\begin{bmatrix} -\frac{3}{2}(3x+4)^{-\frac{3}{2}} \end{bmatrix}_{4}^{t} = 2$ $-\frac{3}{2}(3t+4)^{-\frac{3}{2}} - \begin{pmatrix} -\frac{3}{2} \times 16^{-\frac{3}{2}} \end{pmatrix} = 2$	• ⁵ • ² ×		


Page 23

Question		Generic Scheme	Illustrative Scheme	Max Mark
6			·	
• ¹	SS	use correct double angle formula	• $\sin x - 2(1 - 2\sin^2 x)$ stated or implied by • ²	
•2	SS	arrange in standard quadratic form	$\bullet^2 4\sin^2 x + \sin x - 3 = 0$	
•3	SS	start to solve	• ³ $(4\sin x - 3)(\sin x + 1) = 0$	
			OR	
			$\frac{-1\pm\sqrt{\left(1\right)^2-4\times4\times\left(-3\right)}}{2\times4}$	
•4	ic	reduce to equations in $\sin x$ only	• $4 \sin x = \frac{3}{4}$ and $\sin x = -1$	
•5	pd	process to find solutions in given domain	• $5 0.848$, 2.29 and $\frac{3\pi}{2}$	5
			OR • $\sin x = \frac{3}{4}$ and $x = 0.848$, 2.29 • $\sin x = -1$, and $x = \frac{3\pi}{2}$	
			• $\sin x = -1$, and $x = \frac{3\pi}{2}$	
Notes:				
 In the until the untis the until the until the until the until the until the until	event he equ tuting led the must atic fo dates se case	lation reduces to a quadratic in $\sin x$. $(1-2\sin^2 A \text{ or } 1-2\sin^2 \alpha \text{ for } \cos 2\alpha)$ e equation is written in terms of x at s appear by \bullet^3 stage for \bullet^2 to be award rmula to solve the equation, $`=0$ ' mm may express the equation obtained at	g substituted for $\cos 2x$, \bullet^1 cannot be aw	m ed.

- available if sinx appears explicitly at this stage. 6. \bullet^4 and \bullet^5 are only available as a consequence of solving a quadratic equation. 7. \bullet^3 , \bullet^4 and \bullet^5 are not available for any attempt to solve a quadratic written in the form $ax^2 + bx = c$.
- 8. \bullet^5 is not available to candidates who work in degrees and do not convert their solutions into radian measure.
- 9. $\sin x + 4\sin^2 x 3 = 0$ does not gain \bullet^2 , unless \bullet^3 is awarded.

Commonly Observed Responses:		Commonly Observed Responses:					
Candidate A		Candidate B					
• ¹ \checkmark • ² \checkmark (4s-3)(s+1)=0 $s = \frac{3}{4}, s = -1$ $x = 0.848, 2.29 \text{ and } \frac{3\pi}{2}$	• ³ \checkmark • ⁴ \times • ⁵ \checkmark	• ¹ \checkmark $4\sin^2 x + \sin x - 3 = 0$ $5\sin x - 3 = 0$ $\sin x = \frac{3}{5}$ x = 0.644, 2.50	• ² ✓ • ³ X • ⁴ X • ⁵ ✓				
Candidate C		Candidate D					
• ¹ $\sin x - 2(1 - 2\sin^2 x) = 1$ $\sin x - 2 + 4\sin^2 x = 1$ $4\sin^2 x + \sin x = 3$ $\sin x(4\sin x + 1) = 3$ $\sin x = 3, 4\sin x + 1 = 3$ no solution, $\sin x = \frac{1}{2}$ $x = \frac{\pi}{6}, \frac{5\pi}{6}$	• ² • • • • • • • • • • • • • • • • • • •	• ¹ $\sin x - 2(1 - 2\sin^2 x) = 1$ $4\sin^2 x + \sin x - 3 = 0$ $4\sin^2 x + \sin x = 3$ $\sin x(4\sin x + 1) = 3$ $\sin x = 3, 4\sin x + 1 = 3$ no solution, $\sin x = \frac{1}{2}$ $x = \frac{\pi}{6}, \frac{5\pi}{6}$	• ² ✓ • ³ ॐ • ⁴ ×				
Candidate E: Reading $\cos 2x$ as	$\cos^2 x$						
$\sin x - 2\cos^2 x = 1$ $\sin x - 2(1 - \sin^2 x) = 1$	• ¹ X						
$2\sin^{2} x + \sin x - 3 = 0$ (2sin x + 3)(sin x - 1) = 0 sin x = -\frac{3}{2}, sin x = 1							
$\sin x = -\frac{\pi}{2}, \sin x = 1$ no solution, $x = \frac{\pi}{2}$	• • • • •						

Qu	estion	Generic Scheme	Illustrative Scheme	Max Mark
7	a			
• ¹	SS	know to and find intersection of line and curve	• ¹ $2x = 6x - x^2 \Longrightarrow x = 0, x = 4$	
• ²	ic	use " upper – lower"	$\bullet^2 \int \left(\left(6x - x^2 \right) - 2x \right) dx$	
• ³	pd	integrate	• $3 2x^2 - \frac{1}{3}x^3$	
• ⁴	pd	substitute limits and evaluate	• $10\frac{2}{3}$	
• ⁵	pd	evaluate area developed	• $10\frac{2}{3} \times 300 = 3200 \mathrm{m}^2$	5
Not	tes:			
1. '	'0' appe	aring as the lower limit of the integra	l is sufficient evidence for $x = 0$ at \bullet^1 stage.	
2.	• ⁵ is onl	ly available as a consequence of mult	iplying an exact answer at \bullet^4 stage.	
3. 7	The omi	ssion of dx at \bullet^2 should not be penal	ised.	
4. '	Where a	candidate differentiates one or both	terms \bullet^3 , \bullet^4 and \bullet^5 are unavailable.	
5.	Do not j	penalise the inclusion of $+c$.		
6. 4	Accept	$\int (4x - x^2) dx \text{ for } \bullet^2.$		

Qu	estion	Generic Scheme	Illustrative Scheme	Max Mark
7	b			
•6	SS	set derivative to 2	• $6 - 2x = 2$	
•7	pd	find point of contact	• ⁷ $x = 2, y = 8$	
•8	pd	find equation of road	• ⁸ $y = 2x + 4$	
•9	SS	find correct integral	•9 $\left[\left(x^2 + 4x \right) - \left(3x^2 - \frac{1}{3}x^3 \right) \right]_0^2$	
• ¹⁰	ic	calculate area	• ¹⁰ 800m ²	5
Not	es:			
	y = 2x • ¹⁰ is o ie $\int (lin$	puation of the form $y = 2x + c$ with $c > 0$ +4 must appear explicitly or as part of t only available as a result of a valid strate ne)-(quadratic) and lower limit = 0 and u	the integrand for \bullet^8 to be awarded. begy at the \bullet^9 stage,	
Cor	nmonl	y Observed Responses:		
Lin	e has e	e D: Alternative Method quation of the form $y=2x+c$, $y=2x-c$	·	
inte	rsect w	where $x^2 - 4x + c = 0$	•6 🗸	
tang		\Rightarrow 1 point of intersection		
	$\Rightarrow b^2 - 4ac = 0 \qquad \qquad \bullet^7 \checkmark$			
		16 - 4c = 0	• ⁸ ✓	
		<i>c</i> = 4	•	
Cor	tinue a	as above.		

Question		Generic Scheme Illustrative Scheme			Max Mark		
8							
• ¹	pd	correct values	•1	g = -p, f = -2p, c = 3p+2			
• ²	SS	substitute and rearrange	•2	$5p^2 - 3p - 2$			
•3	ic	knowing condition	•3	0 5			
• ⁴	pd	factorise and solve	•4	$(5p+2)(p-1)=0 \Rightarrow p=-\frac{2}{5}, p=1$			
• ⁵	ic	correct range	• ⁵	$p < -\frac{2}{5}, \ p > 1$	5		
Not	es:						
1.	Candid gain \bullet^1		the centre	$(p, 2p)$ and state the radius, $r = \sqrt{\dots - (3p)}$	<u>(+2)</u>		
2.	0		$p^2 + (2p)^2$	$^{2} - (3p + 2)$. If brackets are omitted \bullet^{1} ma	y only		
		rded if subsequent working is cor	· · ·				
3.							
4.							
5.	5. For a candidate who uses $c = 2$ and follows through to get $p < -\sqrt{\frac{2}{5}}$, $p > \sqrt{\frac{2}{5}}$, award \bullet^2 , \bullet^3 and						
	\bullet^5 .						
6.							
7.							
C		Observed Responses:					
	ndidate		Car	ndidate B			
		f = -4p, c=3p+2 • ¹ X					
U	1 0		($(-p)^{2} - p^{2} + (y - 2p)^{2} - 4p^{2} + 3p + 2 = 0$			
	$p^2 - 3p$		(1	$(-p)^2 + (y-2p)^2$	•1 🗸		
g^2	$+f^{2}-c$	2 > 0		$=5p^2-3p-2$	• ² 🗸		
(4 <i>p</i>	$(5p)^{-1}($	$(p-2)=0 \implies p=-\frac{1}{4}, p=\frac{2}{5} \bullet^4 \checkmark$			•3 🗸		
p <	$-\frac{1}{4}$, p	$2 > \frac{2}{\pi}$ $\bullet^5 \checkmark$	(5)	(p+2)(p-1) > 0	•4 🗸		
	4	2	<i>p</i> <	$x - \frac{2}{5}, p > 1$	• ⁵ 🗸		

Question		Generic Scheme		Illustrative Scheme		Max Mark	
9	a			T			
\bullet^1	SS	know to differen					
• ²	pd	differentiates trig	. function $e^2 -8\sin\left(2t\right)$		$-\frac{\pi}{2}$)		
•3	pd	applies chain rule	e	•3		and complete	
					a(t) = -1	$6\sin\left(2t-\frac{\pi}{2}\right)$	3
Co	mmonl	y Observed Respon	ses:				
Car	ndidat	a A · Altornativo N	lothod				
Par	Candidate A: Alternative M Part (a)		Part (b)			Part (c)	
$v(t) = 8\cos\left(2t - \frac{\pi}{2}\right) = 8\sin 2t$			$v'(10) = 16\cos 20 = 6.53 \qquad \bullet^{4} \qquad s(t) = \int v(t)dt$ >0, \Rightarrow velocity is increasing $\bullet^{5} \qquad s(t) = -4\cos 2t + c$ $4 = -4 + c \Rightarrow c = 8$			•6 🗸	
$v'(t) = \dots$ • ¹			>0, \Rightarrow velocity is increasing $\bullet^5 \checkmark s(t) = -4\cos 2t + c$			7	
$=8\cos 2t$			$s(t) = -4\cos 2t + c$			S(l) = +COS2l + C	•
	• ²						_
	=	×2 • ³				\Rightarrow s(t) = -4 cos 2t + 8	•8 ✓
						or $\Rightarrow s(t) = 8 - 4\cos 2$	et all the second se
Candidate B: Candidates who misinterpret the process for rate of change.							
Par	t (a)		Part (b)			Part (c)	
a(t)	$) = \int 8c$	$\cos\left(2t-\frac{\pi}{2}\right)dt$	If $t = 10$, $a = 4\sin\left(20\right)$	$-\frac{\pi}{2}+$	-C	s = v'(t)	<u>,</u>
	$=4\sin\left(2t-\frac{\pi}{2}\right)+c$		=-1.63+c		$s(t) = -16\sin\left(2t - \frac{\pi}{2}\right)$)	
		bcess award $\frac{0}{3}$	Cannot evaluate award	1 %		Award $\frac{2}{3}$	
Ca	ndidat	e C					
Pa	rt (a)		Pa	rt (b)			
	$a = v'(t)$ or equivalent \bullet^1		a($a(10) = 4\sin\left(20 - \frac{\pi}{2}\right) = -1.63 \bullet^4$			
<i>a</i> =	$4\sin(2)$	$2t-\frac{\pi}{2}$ • ² X	• ³ X		ecreasing	•5 💉	
		On			a consequenc	the of \bullet^1 in part (a)	

Question		Generic Scheme	Illustrative Scheme	Max Mark
9	b			
• ⁴	SS	know to and evaluate $a(10)$	• $a(10) = 6.53$	
• ⁵	ic	interpret result	• ⁵ $a(10) > 0$ therefore increasing	2
Not	tes:			
9 • ⁶	c ic	n acceleration and $v'(t)$. know to integrate	• ⁶ $s(t) = \int v(t) dt$	
• ⁶	ic pd	know to integrate integrate correctly	• ⁶ $s(t) = \int v(t) dt$ • ⁷ $s(t) = 4\sin\left(2t - \frac{\pi}{2}\right) + c$	
• ⁸	ic	determine constant and complete	• ⁸ $c = 8 \operatorname{so} s(t) = 4 \sin\left(2t - \frac{\pi}{2}\right) + 8$	3
Not	tes:			
	• ⁷ and for • ⁶ .	\bullet^8 are not available to candidates who we	ork in degrees. However, accept $\int 8\cos(2t - t)$	90) <i>dt</i>

[END OF MARKING INSTRUCTIONS]