Paper 1 Section A

	Question	Answer
	1	С
	2	В
	3	Α
	4	D
	5	D
	6	Α
	7	С
	8	D
	9	В
	10	С
	11	С
	12	Α
	13	В
	14	D
	15	В
	16	С
	17	В
	18	С
	19	Α
	20	D
Summary	Α	4
	В	5
	С	6
	D	5

Paper 1- Section B

Qu	estion	Generic Scheme	Illustrative Scheme	Max Mark		
21	a					
•1	SS	know to differentiate and one term correct	•1 = $6x$ or = $-3x^2$			
• ²	SS	the other term correct and set derivative to $\boldsymbol{0}$	• ² $6x - 3x^2 = 0$ stated explicitly			
• ³ • ⁴ • ⁵	pd pd pd	solve $\frac{dy}{dx} = 0$ evaluate y coordinates justify nature of stationary points	• ³ $x = 0$ 2 • ⁴ $y = 0$ 4 • ⁵ use 2 nd derivative or nature table			
6	•	· , , , .	б : , (0, 0) 1 , (0, 4)	-		
•	1C	interpretation	• min. at $(0,0)$ and max. at $(2,4)$	6		
No	tes:					
1.	\bullet^2 is n	not available for statements such as $\frac{dy}{dx} = 0$, w	vith no other working.			
2	Accer	of $3r^2 - 6r = 0$ for \bullet^2				
3	For ca	andidates using a nature table the minimum re	0 2			
4.	5. For candidates using a nature table, the minimum response for \bullet is. x values 0 and 2; $\frac{dy}{dx}$ or expression $6x - 3x^2$; signs and zeroes; shape. $\frac{dy}{dx} = 0 + 0 - \frac{1}{2}$					
	dx = 0 metriculate which anteresting out then bore dx					
	follow through mark. \bullet^{5} and \bullet^{6} are not available if a nature table has been used, but may be awarded					
	where candidates have used the 2^{nu} derivative.					
5.	5. For candidates who differentiate incorrectly \bullet ³ and \bullet ⁴ may be awarded as follow through marks. \bullet ³					
	and \bullet° are not available if a nature table has been used, but may be awarded where candidates have					
	used the $2^{n\alpha}$ derivative.					
6.	6. At \bullet° stage accept min at $x = 0$ and max at $x = 2$.					
7.	7. Candidates who find the <i>x</i> -coordinates of the SPs correctly but correctly process only one of these to					
	determine its nature, gain \bullet° but not \bullet° .					
1						

Commonly Observed Responses:

Candidate A

9. The minimum required for \bullet^8 is a cubic curve, consistent with the SPs found in part (a) and appropriate number of *x* intercepts appearing on their sketch. It must be possible to determine the coordinates of the SPs from the sketch.

The following are acceptable for \bullet^8

Que	stion	Generic Scheme	Illustrative Scheme	Max Mark
22	a			
$ \begin{array}{c} \bullet^{1} & \text{s}_{2} \\ \bullet^{2} & \text{s}_{3} \\ \bullet^{3} & \text{p} \end{array} $	s knov s knov d proc	w to use $x = -1$ and obtain an equation w to use $x = 2$ and obtain an equation ess equations to find one value	• $6(-1)^3 + 7(-1)^2 + a(-1) + b = 0$ • $6(2)^3 + 7(2)^2 + a(2) + b = 72$ • $a = -1 \text{ or } b = -2$	
• ⁴ p	d find	the other value	• $b = -2$ or $a = -1$	
			Alternative Method for \bullet^{1} and \bullet^{2} • ¹ -1 6 7 <i>a b</i> -6 -1 -a+1 6 1 <i>a</i> -1 <i>b</i> -a+1=0 • ² 2 6 7 <i>a b</i> 12 38 2a+76 6 19 <i>a</i> +38 2a+b+76=72	4
Note	•			
1. An incorrect value at \bullet^3 should be followed through for the possible award of \bullet^4 . However, if the equations are such that no solution exists, then \bullet^3 and \bullet^4 are not available.				
Com	monly	Observed Responses:		
Cano $\bullet^1 X$	didate . 1 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
• ² •	repea -2 6 6	tted error $ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
Solv	ing to g	get $a = -35, b = 22$ • ³ • • ⁴ •		
Lead	ling to,	in part (b), $\Rightarrow 6x^3 + 7x^2 - 35x + 22 = (x^3 + 2x^2) = (x^3 + 2x$	$-1)(6x^2+13x-22)$	
		• ⁵ • 6 • • ⁷ ~		

Question		Generic Scheme	Illustrative Scheme	Max Mark		
22	b					
•5	SS	substitute for <i>a</i> and <i>b</i> and know to divide by $x+1$	• $(6x^3 + 7x^2 - x - 2) \div (x+1)$ Stated or implied by • ⁶			
•6	pd	obtain quadratic factor	• ⁶ $(x+1)(6x^2+x-2)$			
•7	pd	complete factorisation	• ⁷ $(x+1)(3x+2)(2x-1)$	3		
Not	tes:			1		
 2. 3. 4. 5. 6. 	 For candidates who substitute a = -1 into the correct quotient from part (a), •⁵, •⁶ and •⁷ are available. Candidates who use incorrect values obtained in part (a) may gain •⁵, •⁶ and •⁷ Where the quadratic factor obtained is irreducible, candidates must clearly demonstrate that b²-4ac <0 to gain •⁷. Do not penalise the inclusion of '=0' or for solving for <i>x</i>. Candidates who use values, ex nihilo, for <i>a</i> and <i>b</i> can gain •⁵, if division is correct, but •⁶ and •⁷ are only available if (n+1) is a factor of the resulting automassion 					
Co	mmonly	Observed Responses:				
Ca	ndidate	B	Candidate C			
22a no solution 22b $a = -4, b = -5$ ex nihilo $(6x^3 + 7x^2 - 4x - 5) \div (x + 1)$ $-1 \mid 6 7 -4 -5$			22a no solution 22b $a=2,b=3$ ex nihilo $(6x^{3}+7x^{2}+2x+3)\div(x+1)$ $-1 \begin{vmatrix} 6 & 7 & 2 & 3 \end{vmatrix}$	*		
(x- (x-	6 +1)(6 x^2 + +1)(6 x - 1	$\frac{-6}{1} - \frac{5}{5}$ $\frac{-1}{1} - 5 = 0$ $e^{6} \checkmark$ $e^{7} \checkmark$	$\begin{array}{c cccc} -6 & -1 & -1 \\ \hline 6 & 1 & 1 & 2 \\ \hline \Rightarrow (x+1) & \text{is not a factor} \\ \bullet^6 \text{ and } \bullet^7 \text{ are not available} \end{array}$			
Candidate D						
22a 22b (6x) $(x-b^27)$	no solu a = 4, k a = 1,	attion p=3 ex nihilo $-4x+3) \div (x+1)$ 7 4 3 -6 -1 -31 3 0 +x+3) -72 = -71 does not factorise $-7 \checkmark$				

QuestionGeneric S		Generic Scheme	Illustrative Scheme	Max Mark		
23	a					
\bullet^1	SS	substitute $3x - 5$	• ¹ $x^2 + (3x - 5)^2 + 2x - 4(3x - 5) - 15 = 0$			
• ²	pd	express in standard quadratic form	$\bullet^2 10x^2 - 40x + 30 = 0$			
•3	pd	find <i>x</i> -coordinates	• ³ $x=1$ $x=3$			
•4	pd	find y-coordinates	• $y = -2$ $y = 4$	4		
Not	- PE •		• •			
1.	'=0'm	sust appear at \bullet^1 or \bullet^2 for ma	rk \bullet^2 to be awarded.			
2.	If $x = \frac{1}{3}$	$(y+5)$ is substituted at \bullet^1	then $10y^2 - 20y - 80 = 0$ is obtained at \bullet^2 .			
3.	3. Special Case: In cases where $x=1$ and $x=3$ do not appear as a result of \bullet^1 and \bullet^2 , but are substituted into the equation of the line to obtain the <i>y</i> values, if the candidate then checks that both points lie on the circle, $\frac{3}{4}$ marks are awarded. If, in addition, the candidate makes a statement to the effect that a line can only cut a circle in, at most, 2 points, then $\frac{4}{4}$ marks are awarded. Otherwise, $\frac{0}{4}$ marks.					
4.	• and •	are not available for any at	tempt to solve a quadratic equation of the form $ax^2 + bx$	= C		
Can $x^2 - 10x$ x = 10x	Candidate A $x^2 + (3x-5)^2 + 2x - 4(3x-5) - 15 = 0$ • ¹ \checkmark $10x^2 - 40x + 40 = 0$ • ² \times $x = 2$ and $y = 1$ • ³ \checkmark • ⁴ \checkmark					
23	b	stata contra	e ⁵ (-1.2)			
-6	55 md		• $(1,2)$ • $m = -2, m = \frac{1}{2}$			
•7	pa ic	communicate result	7 demonstrates			
		communeate result	$m_1 \times m_2 = -2 \times \frac{1}{2} = -1$ $\Rightarrow PT \text{ is perpendicular to } QT$ [or other appropriate statement]			
			Alternative Method			
• ⁵	SS	state centre	• ⁵ (-1,2)			
•6	pd	calculate vectors	• ⁶ eg $\begin{pmatrix} -2\\4 \end{pmatrix}$ and $\begin{pmatrix} -4\\-2 \end{pmatrix}$			
•7	ic	communicate result	• ⁷ $\begin{pmatrix} -2 \\ 4 \end{pmatrix} \cdot \begin{pmatrix} -4 \\ -2 \end{pmatrix} = -2 \times -4 + 4 \times -2 = 0$ \Rightarrow PT is perpendicular to QT [or other appropriate statement]	3		

Notes:

- 4. Other valid strategies:
 - a Converse of Pythagoras' Theorem:

•⁶ process lengths, $PT = QT = \sqrt{20}$, $PQ = \sqrt{40}$

- •⁷ apply converse and communicate result clearly.
- b Cosine Rule:
 - •⁶ process lengths, $•^7$ apply cosine rule to obtain angle 90° and communicate result clearly.

Commonly Observed Responses:				
Candidate B	Candidate C			
T(-1,2) • ⁵	T(-1,2) • ⁵			
$m = \frac{1}{2}, m = -2 \qquad \bullet^6 \checkmark$	$m_1 = \frac{1}{2}, m_2 = -2$ • ⁶			
$m_1 \times m_2 = -1$ $\bullet^7 \land$	$m_1 \times m_2 = -1$ $\bullet^7 \checkmark$			
No link between required condition and gradients found.	Required condition is linked to gradients found.			
23 c				
\bullet^8 ss knows to find and states centre	\bullet^8 centre (2, 1)			
• ⁹ pd calculate radius	• ⁹ radius = $\sqrt{10}$			
• ¹⁰ ic state equation of circle	• ¹⁰ $(x-2)^2 + (y-1)^2 = 10$ 3			
• ⁸ ss substitute points into general	Alternative Method			
ss substitute points into general equation of circle	$x^{2} + y^{2} + 2gx + 2fy + c = 0$			
equation of encie	$\bullet^{8} 25 + 6g + 8f + c = 0$			
	5 + 2g - 4f + c = 0 5 - 2g + 4f + c = 0			
• ⁹ pd find f or g or c	• $f = -1$, or $g = -2$, or $c = -5$			
• ¹⁰ ic state values of f , g and c	• ¹⁰ $f = -1, g = -2, c = -5$			
Notes:				

- 5. $(\sqrt{10})^2$ must be simplified to gain \bullet^{10}
- 6. For candidates who find P and Q correctly in part (a), award \bullet^8 if centre (2,1) appears without working.
- 7. For the mid-point of PQ being (2,1), \bullet^8 is available unless subsequent working indicates that this is not the intended centre.
- 8. •⁹ is only available as a result of PQ being a diameter, or using a valid strategy to find the centre eg midpoint of PQ or point of intersection of the perpendicular bisectors of PT and TQ. •¹⁰ is still available.
- 9. Where an incorrect centre or an incorrect radius appear ex nihilo \bullet^{10} is not available.

Question		Generic Scheme		Illustrative Scheme	Max Mark
24					
				Method 1	
\bullet^1	ss t	ake log9 of both sides of the equation	• ¹	$\log_9 y = \log_9 ka^x$	
•2	pd	apply laws of logarithms	• ²	$\log_9 y = \log_9 k + \log_9 a^x$	
•3	pd	apply laws of logarithms	•3	$\log_9 y = \log_9 k + x \log_9 a$	
•4	pd	find k	• ⁴	$\log_9 k = 2, k = 81$ or $k = 9^2 = 81$	
• ⁵	pd	find <i>a</i>	• ⁵	$\log_9 a = \frac{1}{2}, a = 3$ or $a = 9^{\frac{1}{2}} = 3$	5
1				Method 2	
\bullet^1	SS	know to use equation of the line	\bullet^1	$\log_9 y = \frac{1}{2}x + 2$	
•2	pd	write in exponential form	• ²	$y = 9^{\frac{1}{2}x+2}$	
•3	pd	apply laws of indices	• ³	$y = 9^{\frac{1}{2}x}9^2$	
•4	pd	find k	• ⁴	<i>k</i> = 81	
•5	pd	find <i>a</i>	• ⁵	<i>a</i> =3	
Not	es:				
1.	Ca	indidates who start with $\bullet^3 \log_9 y = \log_9 y$	$\log_9 k +$	$x \log_9 a$ also gain \bullet^1 and \bullet^2 .	
2.	In Method 1, base 9 must appear by \bullet^4 stage, for \bullet^1 to be awarded.				
3.	Fo	or $k = 81$ and $a = 3$ with spurious or no	o work	ing, \bullet^4 and \bullet^5 are not available.	

