Paper 2

Que	estion	Generic Scheme				Illust	rative Scheme	Max Mark
1	The first	t three	terms of a sequer	nce are 4, 7 and 16.				
	The seq $u_{n+1} = r$	uence i $nu_n + c_n$	s generated by th, with $u_1 = 4$.	ne recurrence relation				
	Find the	e values	s of m and c .					
	• ¹ i	с	interpret recurr relation	rence	•1	7 = 4n	n + c	
	• ² ic interpret recurrelation			rence	•2	16 = 7	m + c	
\bullet^3 ss know to use sin equation			know to use sine quation	multaneous	•3	7m + c 4m + c	c = 16 c = 7 leading to	4
• ⁴ pd find m and c					•4	m=3,	<i>c</i> = –5	
Not	es:							
1.	Treat ec	luation	s like $7 = m4$	+ c or 7 = m(4)	+c as	bad for	m.	
Reg	ularly O	ccurrir	ng Responses:					
	ididate A	L		Candidate B			Candidate C	
Nov	working			Only one equation			Partial verification	
m =	3 and c	= -5		7 = 4m + c			m = 3 and $c = -5$	
or				m = 3 and $c = -5$			$3 \times 4 - 5 = 7$	
<i>u</i> _{<i>n</i>+}	$_{1} = 3u_{n}$	- 5						
1 m	ark out of	f 4		2 marks out of 4			2 marks out of 4	
Can	didate D)		Candidate E				
by v	rerificatio	n _		7 = 4m + c				
m =	3 and c	= -5		16 = 7m + c	_			
3 X	4 - 5 =	7 and		m = 3 and $c = -$	-5			
з×	/ - 5 =	10						
3 m	arks out o	of 4		4 marks out of 4				

Qu	estio	n		Generic Scheme	Illustrative Scheme	Max Mark			
2	a	The	diagram	shows rectangle PQRS with P(7, 2)	and Q(5, 6).				
		Fin	d the equa	ttion of QR.	R Q(5, 6) P(7, 2) S				
		•1	SS	know to find gradient	• ¹ $m_{\rm PQ} = -2$				
		• ²	ic	use perpendicular gradient	$\bullet^2 \qquad m_{\rm QR} = \frac{1}{2}$	3			
		•3	ic	state equation of line	• ³ $y-6=\frac{1}{2}(x-5)$				
No	tes:	1							
1.	• ³ is	only	available	as a consequence of using a perpend	dicular gradient and the point Q.				
2.	m =	$\frac{1}{2}$ app	pearing ex	nihilo leading to the correct equati	on for QR gains 0 marks.				
2	b	The $x +$	line from 3y = 13 in	n P with the equation ntersects QR at T. dinates of T	R Q(5, 6) T P(7, 2) S				
		•4	SS	prepare to solve	• $x + 3y = 13$ and $x - 2y = -7$				
		•5	pd	solve for one variable	• ⁵ $x = 1$ or $y = 4$	3			
		• ⁶	pd	solve for second variable	• ⁶ $y = 4$ or $x = 1$				
No	tes:								
3. s 4. s 5. •	Subsectors $\mathbf{S}^{4}, \mathbf{\bullet}^{5}$	equer oing c and	it to maki out from P o ⁶ are not a	ng an error in rearranging the equa to Q and then the reverse from Q available to candidates who: (i) equ	tion of QR, • ⁴ can still be awarded but • ⁵ is is not a valid strategy for obtaining T. ate zeroes , (ii) give answers only without w	lost. vorking.			
Re	gula	rly (Occurrin	ig Responses:					
Ca y -	ndic - 6 =	$\frac{1}{2} = \frac{1}{2} (2$	Α x – 5) le	eading to					
2y	2y - x = -17								
	- 3y	= 1	3	-4					
5 <i>y</i>		-4 4		•2 **					
y = x =	= <u> </u>	5 2 5		•6					

Qu	Question		Generic Scheme				Illustrative Scheme					Max Mark
3	a	Give $x^3 +$	en that ($3x^2 + x$	x – 1) is a factor of – 5, factorise this cu	bic fully.							
		•1	SS	know to use $x = 1$ division	in synthetic	• ¹	1	1	3	1	-5 5	
		\bullet^2 pd complete evaluation		•2		1	4	5	0	4		
		\bullet^3 ic state quadratic factor			ctor	•3	x^2 +	-4x + 5				
		•4	ic	valid reason for i quadratic	rreducible	•4	(x - vali	$(x^2 - 1)$ $(x^2 - 1)$	+4x +	5) wi	th	
No	tes:											
1. 2. 3. 4. 5.	 Accept any of the following for •⁴ a) b² - 4ac = 16 - 20 < 0, so does not factorise. b) b² - 4ac = 16 - 4 × 5 < 0, so does not factorise. c) 16 - 4 × 5 < 0, so does not factorise. Do not accept any of the following for •⁴ a) b² - 4ac < 0, so does not factorise. b) (x - 1)(x² + 4x + 5) does not factorise. c) (x - 1)(x) cannot factorise further. Candidates who use algebraic long division to arrive at (x - 1)(x² + 4x + 5) gain marks •¹, •² and •³. Candidates who complete the square and make a relative comment regarding no real roots gain •⁴. Treat (x - 1)x² + 4x + 5, with a valid reason as had form for •⁴ 											
Rea Ca	gular ndid	rly Oo late A	ccurring A	g Responses:	Candidate I	3						
x ² (x	+ 4: - 1)	x + 5)(x +	- 5)(x -	• ³ - 1) • ⁴ ×	$x^3 + 3x^2 +$	x-5 = = V	(x - (x - x))	1)(x 1)(x^2 - valid re	$x^2 + \dots$ + 4x - eason	x+) + 5)) • ¹	• ²
Ca x^2 $(x b^2)$ fac	ndid + 4: - 1) - 4a	late ($x + 5$) $x^2 + 1$ $x^2 = 1$	$\frac{1}{6} - \frac{1}{20} < \frac{1}{20}$	• ³ 5 0 so does not • ⁴								

Que	estio	n		Generic S	cheme		Illustrative Scheme Max Mark Mark			
3	b	Sho $y =$	be that the $x^4 + 4x^3$	the curve with equivient $x^2 - 20x + 31$	ation has only one stati	ionary p	point.			
		Fin	d the <i>x</i> -co	pordinate and det	termine the natur	e of thi	s point.			
		• ⁵	SS	start to differ	entiate		• ⁵ t	wo non-zero term	s correct	
		• ⁶ pd complete derivative and equate to 0		ivative and		6 4	$4x^3 + 12x^2 + 4x - 2$	20 = 0		
		•7	ic	factorise			7 4	$4(x-1)(x^2+4x+$	- 5)	5
		•8	pd	process for <i>x</i>			⁸ x	x = 1		
	• ⁹ ic justify nature and state conclusion						• ⁹ r	nature table and m	ninimum	
Not	es:									
6. 7. 8. 9.	= 0 • ⁹ ca Can get 1 If th	mus an be didat more e equ	t appear gained u es who ii than one iation sol	at \bullet^6 or \bullet^7 for main the second of a correctly obtain solution in order ly detain the solution in order ly dat \bullet^8 is not a	hark \bullet^6 to be gain derivative to dete more than one li r to gain \bullet^8 . Mar cubic then \bullet^8 and	ed. ermine t inear fa k • ⁹ is 1 d • ⁹ are	he nature ctor in (a not availa not avai	e. 1) and use this resu able. ilable.	ılt in (b) mu	st solve to
Ca	gular ndid	late	CCUFFINg D	g Kesponses:		Can	didate I	E		
(x - 1)(x + 5)(x - 1) from (a) leading to $4x^3 + 12x^2 + 4x - 20 = 0$							- () +		
4(<i>x</i>	³ +	3 <i>x</i> ²	+x - 5)	0 = 0			M	in	•9 🗸	
4(<i>x</i>	- 1)(x ·	+ 5)(<i>x</i> –	(-1) = 0	•7 💉	Mini	imum aco	ceptable response.		
<i>x</i> =	:1 c	or x	= -5		• ⁸ 💉 • ⁹ 🗙					

Que	Question		Generic Scheme	Illustrative Scheme	Max Mark						
4	The lir	ne wit	h equation $y = 2x + 3$ is a tangent to the	ne curve with equation							
	$y = x^3$	$+3x^{2}$	+2x + 3 at A(0, 3), as shown in the d	iagram.							
	The lir	ne me	ets the curve again at B.	y^{4} $y = x^{3} + 3x^{2} + 2x + 3$							
	Show	that B	is the point $(-3, -3)$								
	and fin	nd the	area enclosed by	A(0, 3)							
	the line	e and	the curve.								
			<i>y</i> =	= 2x + 3							
	• ¹	SS	know how to show that B is the point of intersection of the line and curve.	• ¹ $(-3)^3 + 3(-3)^2 + 2(-3) + 3 = -3$ and $2(-3) + 3 = -3$ or solving simultaneous equations							
	• ²	SS	know to integrate and interpret limits.	• $\int_{-3}^{0} \dots \dots$	6						
	•	1C	use "upper – lower"	• $\int_{-3}^{3} (x^3 + 3x^2 + 2x + 3) - (2x + 3) dx$							
	• ⁴	pd	integrate	• $\frac{1}{4} \frac{1}{4} x^4 + x^3$							
	• ⁵	pd	substitute limits	• ⁵ 0 - $\left(\frac{1}{4}(-3)^4 + (-3)^3\right)$							
	• ⁶	pd	evaluate area	$\bullet^6 \qquad \frac{27}{4} \text{ units}^2$							
Not	es:										
1. W 2. C 3. C 4. W 1 5. T	 Notes: Where a candidate differentiates one or more terms at •⁴ then •⁵ and •⁶ are not available. Candidates who substitute without integrating at •³ do not gain •⁴, •⁵ and •⁶. Candidates must show evidence that they have considered the upper limit 0 at •⁵. Where candidates show no evidence for both •⁴ and •⁵, but arrive at the correct area, then •⁴, •⁵ and •⁶ are not available. The omission of <i>dx</i> at •³ should not be penalised. 										
Car	didate	Jccur A	ring Kesponses:								
\int_0^{-3}	(lower	-up	per)dx • ³ 🗸								
$=\frac{2}{4}$	7		•6 ✓								

Que	estion		Generic Scheme		Illustrative Scheme	Max Mark
5	Solve	the eq	uation			
	log ₅ (3	(3-2x)	$1 + \log_5 (2 + x) = 1$, where x is a real n	umber.		
	•1	SS	use correct law of logs	• ¹	$\log_5 [(3-2x) (2+x)] = 1$ stated or implied by • ²	
	•2	• ² ic know to and convert to exponential form			$(3-2x)(2+x) = 5^1$	4
	• ³ pd express as an equation in standard quadratic form			• ³	$2x^2 + x - 1 = 0$	-
	•4	ic	solve quadratic	•4	$x = \frac{1}{2}$, $x = -1$	
Not	es:					
1. 2.	For \bullet^2 . Where not ava	accept candio ilable.	$= -10g_55.$ dates discard an acceptable solution ei	ther by cr	ossing out or by explicit statemer	it, then \bullet^4 is
Reg		Occur	rring Responses:	Condida	4- D	
Car	ididate	Α		Candida	ite B	
<i>x</i> =	$\frac{1}{2}$, x	≠ ∕−1	• ⁴ ×	$2x^2 + x$	-1 = 0	•3
	_ /			(2x + 1)	(x-1)=0	
				$x = -\frac{1}{2}$, <i>x</i> = 1	• ⁴ ×
Car	ndidate	С		Candida	ite D	
inco $x =$	orrect w ∕−2 ,	orking x = 1	g leading to $\bullet^4 \checkmark$	$\log_5 \frac{(3-2)}{(2+1)}$	$\frac{2x}{x} = 1$	• ¹ ×
	a tha di	a a ard a	of $x = 2$ is valid in the context of	$\frac{(3-2x)}{(3-2x)} =$	5 ¹	•2 💉
the	original	questi	ion. $x = -2$ is valid in the context of	(2+x)		
					• ³ ×	• ⁴ ×
Car	ndidate	E		Candida	ite F	
log	5[(3 – 2	2 <i>x</i>)(2	(x+x)]=1 • ¹	~		• ¹ ×
(3 -	- 2x) (2	2 + x	\mathbf{e}) = 1 $\mathbf{e}^2 \mathbf{x}$	(3 - 2x)	(2+x) = 1	• ² ×
2 <i>x</i> ²	- <i>x</i> -	6 = 0	• ³ ×	$\bullet^3 \bullet^4$ no	t available	
<i>x</i> =	2, <i>x</i> =	$=\frac{-3}{2}$	• ⁴ ×			
\bullet^4 is	s not aw	arded	since $x = 2$ is not a valid solution.			

Que	estion		Generic Scheme			Illustrative Scheme	Max Mark			
6	Giver	n that	$\int_0^a 5\sin 3x dx = \frac{10}{3}, 0 \le a$	$<\pi$, calculate	the value of	f <i>a</i> .				
	• ¹	SS	integrate correctly		•1	$\left[\frac{-5}{3}\cos 3x\right]$				
	• ²	pd	process limits		•2	$\frac{-5}{3}\cos 3a + \frac{5}{3}\cos 0$	5			
	\bullet^3 pd evaluate and form a correct equation			\bullet^3	$\frac{-5}{3}\cos^3 a + \frac{5}{3} = \frac{10}{3}$					
	• ⁴	pd	start to solve equation	on	•4	$\cos 3a = -1$				
	• ⁵	pd	solve for a		• ⁵	$a = \frac{\pi}{3}$				
2. 3. 4. 5.	 Canadates who include solutions outwith the range cannot gain • . The inclusion of + c at •¹ should be treated as bad form. •⁵ is only available for a valid numerical answer. Where the candidate differentiates •¹ and •² are not available. See Candidate A. Where candidate integrate incorrectly •², •³, •⁴ and •⁵ are still available. 									
6.	The va	lue of	f <i>a</i> must be given in radi	ans.						
Can	didate	A	irring Responses.		Candidate	e B				
[15	cos3 <i>x</i>]	a 0		• ¹ ×	[-5cos3 <i>x</i>	$]^a_0$	• ¹ ×			
15c	os3a –	- 15c	os0	• ² ×	-5cos3a	+ 5cos0	•2 🖍			
15c	os3a –	- 15 : 5	$=\frac{10}{3}$	•3	-5cos3a	$+5 = \frac{10}{3}$	•3			
cos	$3a = \frac{3}{4}$	5		• ⁴	$\cos 3a = \frac{1}{3}$		•4			
110 \$	orution	.8		• •	$a = 0 \cdot 41$ Ignore other	er solutions in given interval	•5 🗸			
Can	didate	С			Candidate	e D				
$\frac{5}{3}$ CO	s3 <i>x</i>			• ¹ ×	-15cos3x	;	• ¹ ×			
$\frac{5}{3}\cos 3a - \frac{5}{3}\cos 0$				•2 ×	-15cos3a	$u + 15\cos 0$	•2			
$\frac{5}{3}$ co	s3a –	$\frac{5}{3} = \frac{1}{3}$	<u>0</u> 3	•3 💉	-15cos3a	$u + 15 = \frac{10}{3}$ $u = \frac{-35}{3}$	•3 •			
cos	3a = 3			•4 💉	$\cos 3a = \frac{7}{c}$	3	•4 💉			
no s	olution	S		•5 💉	$a = 0 \cdot 23$ Ignore other	er solutions in given interval	•5 💉			

Que	estion	Generic Scheme	Illustrative Scheme	Max Mark					
7	A man open-en the foll	afacturer is asked to design an aded shelter, as shown, subject to owing conditions.							
	 Condition 1 The frame of a shelter is to be made of rods of two different lengths: <i>x</i> metres for top and bottom edges; <i>y</i> metres for each sloping edge. 								
	Condition 2 The frame is to be covered by a rectangular sheet of material. The total area of the sheet is 24 m^2 .								
	a She $L =$	by that the total length, <i>L</i> metres, of the rods us $3x + \frac{48}{x}$.	ed in a shelter is given by						
	$ullet^1$	identify expression for L in x and y	• ¹ $L = 3x + 4y$						
	• ²	ic identify expression for y in terms of x	$\bullet^2 \qquad y = \frac{24}{2x}$	3					
	• ³ pd complete proof • ³ $L = 3x + 4 \times \frac{24}{2x}$ and complete								
Not	es:								
1.	The sub	stitution for y at \bullet^3 must be clearly shown.							

Que	estion	l		Generic Scheme		Illustrative Scheme	Max Mark
7	b	Thes To m possi	e rods c ninimise ible.	ost £8.25 per metre. production costs, the total leng	th of rods u	sed for a frame should be as small as	
	i ii	Find Calc	the valu ulate the	the of x for which L is a minimum eminimum cost of a frame.	n.		
		• ⁴	pd	prepare to differentiate	•4	48x ⁻¹	
		• ⁵	pd	differentiate	• ⁵	$3 - 48x^{-2}$	
		• ⁶	pd	equate derivative to 0	• ⁶	$3 - 48x^{-2} = 0$	-
	• ⁷ pd process for x				•7	<i>x</i> = 4	
		• ⁸	ic	verify nature	• ⁸	nature table or 2 nd derivative	
		•9	ic	evaluate L	•9	<i>L</i> = 24	
		• ¹⁰	pd	evaluate cost	• ¹⁰	$\cot 24 \times \pounds 8.25 = \pounds 198$	
Not	tes:						
2. D 3. j	Do not do not $y = 2^{-1}$	penal gain • 4 is no	ise the r 9° .	non-appearance of -4 at \bullet^7 . Ho led \bullet^9 .	wever cand	idates who process $x = -4$ to obtain <i>L</i>	Z = −24
Reg	gularly	y Occi	urring l	Responses:			
$L = \frac{dL}{dx} =$	3x + 3x = 3 - 3	$\frac{48}{x}$ $\frac{48}{x^2}$		•4 • •5 •			
Car	ndida	te B			Candid	ate C	
	$\frac{dI}{dx}$		→ 4 _ - 0 Min	<u>→</u> +	$\frac{\frac{x}{dL}}{\frac{dL}{dx}}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		Mini	mum a	cceptable response	Do	not penalise the inclusion of $x = -$	-4

Que	estion		Generic Scheme		Illustrative Scheme	Max Mark					
8	Solve	algebr	aically the equation $\sin 2x = 2\cos^2 x$	c	for $0 \le x \le 2\pi$						
	\bullet^1	SS	use correct double angle formulae	•1	Method 1 2 sin x cos x						
	• ²	SS	form correct equation	• ²	$2\sin x\cos x - 2\cos^2 x = 0$						
	•3	\bullet^3 ss take out common factor		• ³	$2\cos x \left(\sin x - \cos x\right) = 0$						
	• ⁴	ic	proceed to solve	• ⁴	$\cos x = 0$ and $\sin x = \cos x$						
	• ⁵	pd	find solutions	•5	$\frac{\pi}{2}$ $\frac{3\pi}{2}$						
	•6	pd	find remaining solutions	•6	$\frac{\pi}{4}$ $\frac{5\pi}{4}$	6					
	• ¹	SS	use double angle formula	\bullet^1	$\frac{\text{Method } 2}{\cos 2x + 1}$						
	• ²	SS	form correct equation	• ²	$\sin 2x - \cos 2x = 1$						
	• ³	SS	express as a single trig function	•3	$\sqrt{2}\sin\left(2x-\frac{\pi}{4}\right) = 1$						
	• ⁴	ic	proceed to solve	•4	$\sin\left(2x-\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$						
	•5	pd	find solutions	•5	$2x - \frac{\pi}{4} = \frac{\pi}{4}, \ \frac{3\pi}{4} \frac{9\pi}{4}, \ \frac{11\pi}{4}$						
	• ⁶	pd	find solutions	• ⁶	$x = \frac{\pi}{4}, \frac{\pi}{2}$ $x = \frac{5\pi}{4}, \frac{3\pi}{2}$						
Not	es:										
1. In 2. A 3. A 4. F	 In Method 1, = 0 must appear at stage •² or •³ for •² to be available. Accept the use of the wave function to solve sin x - cos x = 0 at stage •⁴ in Method 1. Accept sin2x - 2cos²x = 0 as evidence for •². For candidates who obtain all four solutions in degrees •⁶ can be gained but •⁵ is not available. 										
Reg Car	<mark>ularly</mark> ndidate	<mark>Occur</mark> e A	ring Responses:	Candidat	e B						

Regularly Occurring Responses:		
Candidate A		Candidate B
Correct working leading to $x = 45^{\circ}, 90^{\circ}, 225^{\circ}, 270^{\circ}$	•5 🐝 •6 🗸	Correct working leading to $x = 90^{\circ}, 270^{\circ}$ • ⁵ × • ⁶ ~

Que	estio	n	Generic Scheme			Illustrative Scheme	Max Mark		
9	a	The $P_t = I$	concent $P_0 e^{-kt}$	ration of the pesticide, <i>Xpesto</i> , in soil of	can be	modelled by the equation			
		wher • <i>I</i> • <i>I</i> • <i>t</i>	e: P_0 is the P_t is the is the t	initial concentration; concentration at time <i>t</i> ; ime, in days, after the application of th	e pesti	cide.			
		Once in the soil, the half-life of a pesticide is the time taken for its concentration to be reduced to one half of its initial value.							
		If the	half-li	fe of <i>Xpesto</i> is 25 days, find the value	of <i>k</i> to	2 significant figures.	-		
		\bullet^1	ic	interpret half-life	• ¹	$\frac{1}{2} P_0 = P_0 e^{-25k}$			
		• ²	pd	process equation	• ²	stated or implied by \bullet^2 $e^{-25k} = \frac{1}{2}$			
		•3	SS	write in logarithmic form	•3	$\log_e \frac{1}{2} = -25k$	4		
		• ⁴	pd	process for k	•4	$k \approx 0.028$			
Not	es:								
1.	Do r	not per	nalise ca	andidates who substitute a numerical v	alue fo	or P_0 in part (a).			
Reg	gular	ly Oc	curring	g Responses:					
Car	ndida	ate A							
$\frac{1}{2}P_0$	= P	$P_0 e^{-25}$	k	•1 🗸					
$\frac{1}{2} =$	$e^{-2!}$	5 <i>k</i>		•2 ✓					
log	$10\left(\frac{1}{2}\right)$) = -	25 <i>k</i> log	g ₁₀ e • ³					
k =	0.0	028		•4 ✓					

Question		n	Generic Scheme			Illustrative Scheme		
9	b Eighty days after the initial application, what is the percentage decrease in concentration of <i>Xpesto</i> ?							
		• ⁵	ic	interpret equation	• ⁵	$P_t = P_0 e^{-80 \times 0.028}$		
		•6	pd	process	• ⁶	$P_t \approx 0.1065 P_0$	3	
		•7	ic	state percentage decrease	•7	89%		
Not	es:							
2. For candidates who use a value of k which does not round to $0 \cdot 028$, \bullet^5 is not available unless already								
penalised in part(a).								
3. 4	3. For a value of k ex-minilo then \bullet^{r} , \bullet^{r} and \bullet^{r} are not available. 4. \bullet^{6} is only available for candidates who express P as a multiple of P.							
5.	5. Beware of candidates using proportion. This is not a valid strategy.							
Regularly Occurring Responses:								
Candidate B					Candic	late C		
$P_t = P_0 e^{-0.03 \times 80} \qquad \bullet^5 \checkmark$					$P_t = P_c$	$e^{-80 \times 0.0277}$		
$= 0 \cdot 0907$ • ⁶					$P_t \approx 0$	$\cdot 1088 \dots P_o$	5 🗸	
leading to $90 \cdot 9\%$ $\bullet^7 \checkmark$					89·11	%	1	
Candidate D					Candio	late E		
•5 • •6 •					$P_t = P_0 \epsilon$	$e^{-80 \times 0.028}$		
$P_t = 89\% P_0 \qquad \qquad \bullet^7 \times$					Let P_0	be 100 and $P_t = 100 \times 0.1065$ •	5 🗸	
Candidate F					$P_t = 10$)•65		
$P_t = 100e^{-80 \times 0.028}$ • ⁵					⇒ Perc	\Rightarrow Percentage decrease is 100 - 10.65 = 89.35% $\bullet^7 \checkmark$		
$P_t = 10.65 \qquad \bullet^6 \times$								
$\Rightarrow 89.35\%$ $\bullet^7 \checkmark$								
Candidate G					Candic	late H		
$P_t = P_0 e^{-80 \times 0.028}$ • ⁵					$P_t = P_0 \epsilon$	e ^{-80 × 0.028}		
$P_t = 1 \times \mathrm{e}^{-80 \times 0.028}$					$P_t = \dots$	$e^{-80 \times 0.028}$		
$P_t = 10.65 \qquad \bullet^6 \times$					$P_t = 0.1$	$065 P_0$	5 🗸	
$\Rightarrow 89.35\%$ decrease $\bullet^7 \checkmark$					⇒ 89·3	5% decrease		

[END OF MARKING INSTRUCTIONS]

Page 28