	Paper 2
1 Functions <i>f</i> and <i>g</i> are defined on the set of real num	bers by
• $f(x) = x^2 + 3$	
• $g(x) = x + 4$	
(a) Find expressions for:	
(i) $f(g(x));$	
(ii) $g(f(x))$.	3
Generic Scheme	Illustrative Scheme
1 (a)	
• ¹ ic start composite process	• e.g. $f(x+4)$ stated, or implied by • ²
• 1c correct substitution into expression a^3 is a simplete even d source site	$(x+4)^2 + 3$
• ic complete second composite	$ \bullet x + 3 + 4 $
Notes	
1. Candidates must clearly identify which of their a	answers are $f(g(x))$ and $g(f(x))$; the minimum evidence
for this could be as little as using (i) and (ii) as la	abels.
2. Candidates who interpret the composite function	ons as either $f(x) \times g(x)$ or $f(x) + g(x)$, do not gain any
marks.	
Regularly occurring responses	
Response 1 : The first two marks are for either $f(g)$	g(x) or $g(f(x))$ correct. The third mark is for the other
composite function.	
Candidate A	Candidate B
f(g(x))	f(g(x))
$= (x+4)^2 + 3 \checkmark \bullet^1 \checkmark \bullet^2$	$=(x+7)^2 \times \bullet^3$
g(f(x))	g(f(x))
$= x^{2} + 12 \times e^{3}$	$= x^2 + 7 \checkmark \bullet^1 \checkmark \bullet^2$
2 marks out of 3	2 marks out of 3
Response 2 : Interpreting $f(g(x))$ as $g(f(x))$ and vie	ce versa. A maximum of 2 marks are available.
Candidate C	Candidate D
f(g(x))	f(g(x))
$= x^2 + 7 \times \bullet^2 \times \bullet^2$	$= x^2 + 7 \mathbf{X} \bullet^1 \mathbf{Y} \bullet^2$
g(f(x))	
$= (x+4)^2 + 3 \checkmark \bullet^3$	
2 marks out of 3	1 mark out of 3
Response 3 : Identifying $f(g(x))$ and $g(f(x))$	
Candidate E Candidate F	Candidate G Candidate H
$(x + 4)^2 + 2$ $x + 1$ $(x^2 + 1)^2 + 7$ $(x^2 + 1)^2 + 7$	$\frac{2}{1} = \frac{1}{1} = \frac{1}$
$(x+4) + 5 \times \bullet \checkmark \bullet^{-} \qquad x + \prime \qquad \times \bullet^{*} \times \bullet$ $x^{2} + 7 \qquad (x+4)^{2} + 2 \times 3$	x ² +7 ONLY (1) (x+4) +3 $\checkmark \bullet^{-1} \checkmark \bullet^{-1}$
	or $(x+4)^2 + 3$ ONLY (II) $x + 7$ $\sqrt{6^3}$
2 marks out of 3 1 mark out of 3	0 marks out of 3 3 marks out of 3

Generic Scheme	Illustrative Scheme	
 1 (b) Method 1 : Discriminant ⁴ pd obtain a quadratic expression ⁵ ss know to and use discriminant ⁶ ic interpret result Method 2 : Quadratic Formula ⁴ pd obtain a quadratic expression ⁵ ss know to and use quadratic formula 	Method 1 : Discriminant • $2x^2 + 8x + 26$ • $8^2 - 4 \times 2 \times 26$ or $4^2 - 4 \times 1 \times 13$ stated, or implied by • • $-144 < 0$ or $-36 < 0$ so no real roots Method 2 : Quadratic Formula • $2x^2 + 8x + 26$ • $\frac{-8 \pm \sqrt{8^2 - 4 \times 2 \times 26}}{2 \times 2}$ stated, or implied by • • $4x^2 + 8x + 26$	
•° ic interpret result	•° $\sqrt{-144}$ not possible so no real roots 3	
Notes		
3. Candidates who use $f(x) \times g(x)$ can gain no mark	is in (b) as a cubic will be obtained.	
4. Candidates who use $f(x) + g(x)$ do not gain \bullet^4 (eased) but \bullet^5 and \bullet^6 are available as follow through marks.		
5. In method 1, any other formula masquerading as	a discriminant cannot gain \bullet^5 and \bullet^6 .	
 6. •⁴, •⁵ and •⁶ are only available if f(g(x))+g(f(x)) simplifies to a quadratic expression of the form ax² + bx + c, with b and c both non-zero. 7. •⁶ is only available for a numerical value, calculated correctly from the candidate's response at •⁴, and leading to no real roots. 8. Do not accept for •⁶: 'no roots' in lieu of 'no real roots' 'maths error' or 'ma error'. 9. Candidates who use the word derivative instead of discriminant should not be penalised. 		
Regularly occurring responses	alue of their discriminant	
Candidate I $8^2 - 4 \times 2 \times 26$ \checkmark 6^5 \checkmark $= 64 - 208 < 0$ so no real roots 6^6 X		
Response 5 : Acceptable communication marks		
Method 1	Method 2	
Candidate J Candidate K	Candidate M	
$\sqrt{8^2 - 4 \times 2 \times 26} \checkmark \bullet^5$ $= \sqrt{-144}$	$\frac{-(-4) \pm \sqrt{8^2 - 4 \times 2 \times 26}}{2 \times 2} \checkmark \bullet^5$ ive $= \frac{4 \pm \sqrt{-144}}{4}$ no $\sqrt{-ve}$ so no real roots $\checkmark \bullet^6$	

Page 16

3 A function *f* is defined on the domain $0 \le x \le 3$ by $f(x) = x^3 - 2x^2 - 4x + 6$.

Determine the maximum and minimum values of f.

7

 4 The diagram below shows the graph of a quartic y = h with stationary points at x = 0 and x = 2. On separate diagrams sketch the graphs of: (a) y = h'(x); 	(x), $y = h(x)$ Q 2 x 3	
(b) $y = 2 - h'(x)$.	3	
Generic Scheme	Illustrative Scheme	
 4 (a) •¹ ic identify roots •² ic interpret point of inflection •³ ic complete cubic curve 	 •¹ 0 and 2 only •² turning point at (2, 0) •³ cubic, passing through O with negative gradient 	
Notes		
 All graphs must include both the <i>x</i> and <i>y</i> axes (labelled or unlabelled), however the origin need not be labelled. No marks are available unless a graph is attempted. No marks are available to a candidate who makes several attempts at a graph on the same diagram, unless it is clear which is the final graph. A linear graph gains no marks in both (a) and (b). 		
4 (b)		
• ⁴ ic reflection in <i>x</i> -axis	• ⁴ reflection of graph in (a) in <i>x</i> -axis	
• ⁵ ic translation $\begin{bmatrix} 0\\2 \end{bmatrix}$	• ⁵ graph moves parallel to <i>y</i> -axis by 2 units upwards	
• ⁶ ic annotation of 'transformed' graph	• ⁶ two 'transformed' points appropriately annotated (see Note 5)	
Notes		
 5. 'Transformed' here means a reflection followed by a translation. 6. •⁴ and •⁵ apply to the entire curve. 7. In each of the following circumstances : Candidates who transform the original graph Candidates who sketch a parabola in (a) mark the candidate's attempt as normal and unless a mark of 0 has been scored, deduct the last mark awarded. Indicate this with ≪ (see Regular occurring response G). 8. A reflection in any line parallel to the <i>y</i>-axis does not gain •⁴ or •⁶. 9. A translation other than ^[0] does not gain •⁵ or •⁶ 		
9. A translation other than $\begin{bmatrix} 2 \end{bmatrix}$ does not gain • or • .		
Graph for (a)	Graph for (b) y_{1} 2 y_{2} y_{2} y_{1} 2 y_{1} 2 y_{2} y_{1} 2 y_{2} y_{1} 2 x x x x x x x x	

•⁵ ic translation $\begin{bmatrix} 0\\2 \end{bmatrix}$

^{•&}lt;sup>4</sup> ic reflection in x – axis

5 A is the point (3, -3, 0), B is (2, -3, 1) and C is (4, k, 0).

(a) (i) Express \overrightarrow{BA} and \overrightarrow{BC} in component form.

(ii) Show that
$$\cos A\hat{B}C = \frac{3}{\sqrt{2(k^2 + 6k + 14)}}$$
.

Generic SchemeIllustrative Scheme5(a)• ic interpret vector• i
$$\begin{pmatrix} 1\\0\\-1 \end{pmatrix}$$
Treat $\begin{pmatrix} 1\\0\\-1 \end{pmatrix}$ written as $(1, 0, -1)$ as bad form.• 2 pd process vector• i $\begin{pmatrix} 2\\k+3\\-1 \end{pmatrix}$ Treat $\begin{pmatrix} 1\\0\\-1 \end{pmatrix}$ written as $(1, 0, -1)$ as bad form.• a ss use scalar product• i $cos ABC = \overline{BA} . \overline{BC}$ see Note 1• a pd find $|\overline{BA}|$ • i $cos ABC = \overline{BA} . \overline{BC}$ see Note 1• i find expression for $|\overline{BC}|$ • i $\sqrt{2^2 + (k+3)^2 + (-1)^2}$ or equivalent• i c complete to result• i $\sqrt{2^2 + (k+3)^2 + (-1)^2}$ or equivalent• i dependent on gaining • (, • a and •).Regularly occurring responsesResponse 1: Calculating wrong angleCandidate A $cos AOC = \overline{OA.OC} / OA.OC = 3 \times 4 + (-3) \times k + 0 \times 0 = 12 - 3k$ $OA.OC = -\sqrt{16 + k^2} \times 4$ $OA.OC = -\sqrt{16 + k^2} \times 4$

7

Generic Scheme Illustrative Scheme 5(b) Method 1 : Squaring first Method 1 : Squaring first $\frac{3}{\sqrt{2(k^2+6k+14)}} = \cos 30^{\circ}$ ic link with (a) •⁹ $\left(\frac{3}{\sqrt{2(k^2+6k+14)}}\right)^2 = \left(\frac{\sqrt{3}}{2}\right)^2$ ss square both sides = 0 must appear \bullet^{10} pd rearrange into 'non-fractional' format • $k^2 + 6k + 14 = 6$ or equivalent at this stage. •¹¹ $k^2 + 6k + 8 = 0$ or equivalent pd write in standard form \bullet^{12} • 12 k = -2 or -4pd solve for kMethod 2 : Dealing with fractions first Method 2 : Dealing with fractions first $\frac{3}{\sqrt{2(k^2 + 6k + 14)}} = \cos 30^{\circ}$ ic link with (a) •8 = 0 must appear •⁹ $\sqrt{3}\sqrt{2(k^2+6k+14)} = 6$ pd rearrange into 'non-fractional' format at this stage. •¹⁰ $6(k^2 + 6k + 14) = 36$ ss square both sides •¹¹ $k^2 + 6k + 8 = 0$ or equivalent pd write in standard form •¹¹ • 12 k = -2 or -4•¹² pd solve for k5 Notes The evidence for \bullet^9 may appear in the working for \bullet^{10} in both methods. 3. •⁹ is the only mark available to candidates who replace $\cos 30^\circ$ by 30 in method 1 and \bullet^{10} in method 2. 4. 5. All 5 marks are available to candidates who use 0.87 for cos 30° but 0.9 can gain a maximum of 4 marks. **Regularly occurring responses Response 2** : Working with cos 30° throughout the question **Response 3** : Using the wrong value for $\cos 30^{\circ}$ Candidate D (Method 2) Candidate C (Method 1) $\cos 30^{\circ} = \frac{3}{\sqrt{2(k^2 + 6k + 14)}} \checkmark \bullet^8$ $\frac{3}{\sqrt{2(k^2+6k+14)}} = \frac{1}{2}$ $(\cos 30^\circ)^2 = \left(\frac{3}{\sqrt{2(k^2 + 6k + 14)}}\right)^2 \checkmark \bullet^9$ $\sqrt{2(k^2+6k+14)}=6$ $2(k^2 + 6k + 14) = 36$ **×** •¹⁰ $k^2 + 6k + 14 = 18$ $(\cos 30^{\circ})^2 = \frac{9}{2(k^2 + 6k + 14)}$ $k^{2} + 6k - 4 = 0$ $\checkmark \bullet^{11}$ $2(\cos 30^\circ)^2(k^2+6k+14) = 9 \checkmark \bullet^{10}$ $k = \frac{-6 \pm \sqrt{6^2 - 4 \times 1 \times (-4)}}{2 \times 1}$ = 0.61, -6.61 $\checkmark \bullet^{12}$ If cos 30° is subsequently evaluated

Page 22

then \bullet^{11} and \bullet^{12} may still be available.

6 For $0 < x < \frac{\pi}{2}$, sequences can be generated using the recurrence relation

 $u_{n+1} = (\sin x)u_n + \cos 2x$, with $u_0 = 1$.

(a) Why do these sequences have a limit?

Generic Scheme	Illustrative Scheme	
6 (a) • ¹ ic condition on u_n coefficient • ² ic connect coefficient with given interval	• $-1 < \sin x < 1$ • in interval, $0 < \sin x < 1$	
Notes		
1. For \bullet^1 do not accept:		
• $\sin x$ lies between -1 and 1		
-1 < x < 1		
-1 < 500 < 1	n 1' for a	
However, accept $\sin x$ greater than -1 and less than 1 for •.		
2. Do not accept $-1 < a < 1$ for \bullet^1 unless <i>a</i> is clearly identified as $\sin x$, which may not appear until (b).		
3. $0 < \sin x < 1$ and nothing else, does not gain •' but gains •'.		
4. $0 \le \sin x \le 1$ and nothing else, does not gain • or	•* .	
Regularly occurring responses		
Conditate A		
Candidate A This sequence has a limit because		
$-1 < \sin x < 1$ within the domain.	-1 < u < 1, $-1 < u < 1$,	
Candidate B		
Since $\sin x$ in this domain will also	ways • ¹ X	
be greater than 0 and less than 1.	\checkmark • ² \checkmark	
Candidate C		
$\sin \frac{\pi}{2} = 1$ and $\sin 0 = 0$ so the multiplication is $\sin \theta = 0$.	olier $\bullet^1 \mathbf{X}$	
of $u_{\rm u}$ is between 0 and 1, so it has a	$\bullet^2 X$	
" Candidate D		
$-1 \leq \sin x \leq 1$,		
for $0 < x < \frac{\pi}{2}$, $0 < \sin x < 1$	$\bullet^1 X$	
so limit exists	• ² 🗸	
^		
Response 2 : Minimum response for both marks		
Candidate E	Candidate F	
for $0 < x < \frac{\pi}{2}$, $0 < \sin x < 1$ • ² \checkmark	if limit, $-1 < \sin x < 1 \bullet^1 \checkmark$	
so $-1 < \sin x < 1 \bullet^1 \checkmark$ so limit	for $0 < x < \frac{\pi}{2}$, $0 < \sin x < 1 \bullet^2 \checkmark$	

2

6 (b) The limit of one particular sequence generated by this recurrence relation is $\frac{1}{2}\sin x$. Find the value(s) of *x*.

7

Generic Scheme Illustrative Scheme 6 (b) •³ limit = $\frac{\cos 2x}{1 - \sin x}$ ss appropriate limit method or $l = \sin x \times l + \cos 2x$ •⁴ $\frac{1}{2}\sin x = \frac{\cos 2x}{1-\sin x}$ or $\frac{1}{2}\sin x = \sin x \times \frac{1}{2}\sin x + \cos 2x$ substitute for limit ic (\bullet^3 may be stated, or implied by \bullet^4 in both methods) •⁵ ... $1-2\sin^2 x$... ss use appropriate double angle formula •⁶ e.g. $3\sin^2 x + \sin x - 2$ = 0 must appear at •⁶ or •⁷ pd express in standard form •⁷ e.g. $(3\sin x - 2)(\sin x + 1)\int_{1}^{\infty} to gain \bullet^{6}$ pd start to solve quadratic equation •⁸ $\sin x = \frac{2}{2}$ or $\sin x = -1$ pd reduce to equations in $\sin x$ only ic select valid solution • x = 0.730 or outwith interval 7 Notes \bullet^7 , \bullet^8 and \bullet^9 are only available if a quadratic equation is obtained at \bullet^6 stage. 5. 6. Candidates may express the quadratic equation at the \bullet^6 stage in the form $3s^2 + s - 2 = 0$. For candidates who do not solve a trigonometric quadratic equation at $\bullet^7 \sin x$ must appear explicitly to gain \bullet^8 . •⁷, •⁸ and •⁹ are not available to candidates who 'solve' a quadratic equation in the form $ax^2 + bx = c$, $c \neq 0$. 7. 8. For \bullet ⁹ there must be one valid solution, and one solution outwith interval which is rejected. 9. •⁹ is not available to candidates who leave their answer in degree measure. 10. Cross marking is available for \bullet^8 and \bullet^9 . **Regularly occurring responses Response 3** : Evidence for identification of *a* appearing in (b) Candidate G •1 🗸 (a) -1 < a < 1(b) $L = \frac{b}{1-a} = \frac{\cos 2x}{1-\sin x} \checkmark \bullet^3$ •² X •³ 🗸 Response 4 : Error in algebra and subsequent quadratic equation solution Candidate H Candidate I $L = \frac{b}{1-a} = \frac{1}{2}\sin x$ $\frac{\cos 2x}{1-\sin x} = \frac{1}{2}\sin x \quad \checkmark \bullet^3 \quad \checkmark \bullet^4$ $\frac{\cos 2x}{1-\sin x} = \frac{1}{2}\sin x \checkmark \bullet^3 \checkmark \bullet^4$ $\frac{1}{2}\sin x(1-\sin x) = 1-\sin^2 x$ × •⁵ $\sin^2 x + \sin x - 2 = 0 \quad \checkmark \bullet^6$ $\cos 2x = -\frac{1}{2}\sin^2 x \quad \mathbf{X} \bullet^6$ $(\sin x - 1)(\sin x + 2) = 0 \checkmark \bullet^7$ $\frac{1}{2}\sin^2 x + \cos 2x = 0$ $\sin x = 1$ and $\sin x = -2 \checkmark \bullet^8$ $\frac{1}{2}\sin^2 x + (1 - 2\sin^2 x) = 0 \quad \checkmark \quad \bullet^5$ $x = \frac{\pi}{2}$ not possible 🕉 🗣 $-\frac{3}{2}\sin^2 x + 1 = 0$ See Note 8 $\sin^2 x = \frac{2}{2} \checkmark \bullet^7$ $\sin x = \sqrt{\frac{2}{3}}$ and $\sin x = -\sqrt{\frac{2}{3}}$ $\checkmark \bullet^{8}$ x = 0.955, 2.186 x = 4.097, 5.328 $\checkmark \bullet^{9}$

 $y = 4^x$ The diagram shows the curves with equations $y = 4^x$ and $y = 3^{2-x}$. The graphs intersect at the point T. (a) Show that the *x*-coordinate of T can be written in the form $\frac{\log_a p}{\log_a q}$, for all a > 1. $y = 3^{2-x}$ 6 Ο **Generic Scheme Illustrative Scheme** 7(a) Method 1 • $4^x = 3^{2-x}$ ss equate expressions for *y* •² $\log_a(4^x) = \log_a(3^{2-x})$ stated, or implied by •³ ss take logarithms of both sides • $x \log_a 4 = (2 - x) \log_a 3$ ic use law of logs : $\log_a x^n = n \log_a x$ • $x(\log_a 4 + \log_a 3) = 2\log_a 3$ pd gather like terms •⁵ $x \log_a 12 = \log_a 9$ ic use law of logs: $\log_{a} p + \log_{a} q = \log_{a} pq$ $\frac{\log_a 9}{\log_a 12}$ stated explicitly ic complete to required form Method 2 Method 3 • $4^x = 3^{2-x}$ $4^x = 3^{2-x}$ $\bullet^2 \quad \log_3(4^x) = 2 - x$ $4^x = \frac{3^2}{3^x}$ In methods 1 and 2: $\bullet^3 \quad x \log_3 4 = 2 - x$ If the first line of working is that at the $12^{x} = 9$ $x = \frac{2}{1 + \log_3 4}$ •² stage, then •¹ and •² are awarded. $\log_a 12^x = \log_a 9$ $2\log_3 3$ $x \log_a 12 = \log_a 9$ If the first line of working is that at the $\log_2 12$ •³ stage, then only •² and •³ are $\log_a 9$ stated explicitly $\frac{\log_a 9}{\log_a 12}$ stated explicitly awarded. $\log_{a} 12$ 6 Notes 1. In methods 1 and 2, if no base is indicated then \bullet^2 is not available, however \bullet^3 , \bullet^4 and \bullet^5 are still available. In method 3, if no base is indicated then \bullet^4 is not available , however \bullet^5 is still available. 2. In all methods, if a numerical base is used then \bullet^6 is not available. 3. In method 1, the omission of brackets at the \bullet^3 stage is treated as bad form, see Response 1. 4. *p* and *q* must be numerical values. **Regularly occurring responses Response 1** : Omission of brackets around 2-x $4^x = 3^{2-x} \checkmark \bullet^1$ $x \log_a 4 = 2 - x \log_a 3 \checkmark \bullet^2 \checkmark \bullet^3$ $4^x = 3^{2-x} \checkmark \bullet^1$ Candidate A **Candidate B** $x(\log_a 4 + \log_a 3) = 2 \times \bullet^4$ $x \log_a 4 = 2 - x \log_a 3 \checkmark \bullet^2 \checkmark \bullet^3$ $x \log_{2} 12 = 2$ $\checkmark \bullet^{5}$ $x = \frac{1}{\log_a 12}$ **Response 2** : Using different bases **Response 3** : Taking logs first Candidate C Candidate D $=\frac{2\log_a a}{\log_a 12}$ $y = 4^x$ and $y = 3^{2-x}$ $4^x = 3^{2-x} \checkmark \bullet^1$ $\log_a y = \log_a 4^x$ and $\log_a y = \log_a 3^{2-x} \checkmark \bullet^2$ $\log_{3} 4^{x} = \log_{4} 3^{2-x} \times e^{2}$ $=\frac{\log_a a^2}{\log_a 12}$ $\log_a y = x \log_a 4$ and $\log_a y = (2 - x) \log_a 3 \checkmark \bullet^3$ $x \log_{3} 4 = (2 - x) \log_{4} 3 \checkmark \bullet^{3}$ $x \log_a 4 = (2 - x) \log_a 3 \checkmark \bullet^1$

7 (b) Calculate the *y*-coordinate of T.

2

[END OF MARKING INSTRUCTIONS]