Paper 1 Section A

	Question	Answer
	1	С
	2	D
	3	В
	4	В
	5	Α
	6	С
	7	Α
	8	С
	9	Α
	10	В
	11	D
	12	В
	13	D
	14	Α
	15	D
	16	С
	17	D
	18	В
	19	В
	20	Α
<u>Summary</u>	Α	5
	В	6
	С	4
	D	5

21 (a) (i) Show that (x-4) is a factor of $x^3 - 5x^2 + 2x + 8$.

- (ii) Factorise $x^3 5x^2 + 2x + 8$ fully.
- (iii) Solve $x^3 5x^2 + 2x + 8 = 0$.

6

			Generic Scheme			Illusti	rative Scheme	
21	(a)							
				Me	etho	od 1 : Using synthet	tic division	
	$ullet^1$	SS	know to use $x = 4$	\bullet^1	4	1 -5 2	8	
	- 2			2			0	
	•	ра	complete evaluation	•	4	1 -5 2	8 _8	
	• ³	ic	state conclusion	• ³	'r	emainder is zero so	(x-4) is a factor'	
	\bullet^4	ic	find quadratic factor	•4	x^2	$x^{2} - x - 2$	stated, or implied by • ⁵	
	• ⁵	pd	factorise completely	•5	(x	(x-4)(x-2)(x+1)	stated explicitly in any order	
	• ⁶	ic	state solutions	•6	-	1, 2, 4		
				Me	etho	d 2 : Using substitu	ution and inspection	
				\bullet^1	k	now to use $x = 4$	-	
				• ²	64	4 - 80 + 8 + 8 = 0		
				•3	(x	(-4) is a factor		
				•4	(x	$(x^2 - 4)(x^2 - x - 2)$	stated, or implied by • ⁵	
				•5	(x	(x-4)(x-2)(x+1)	stated explicitly in any order	
				•0	-	1, 2, 4	6	
No	tes							
1.	\bullet^3 is	only a	vailable as a consequence of the evider	nce fo	or '	\bullet^1 and \bullet^2 .		
2.	2. Communication at \bullet^3 must be consistent with working at \bullet^2 .							
	i.e. candidate's working must arrive legitimately at zero before \bullet^3 is awarded.							
	If the remainder is not 0 then an appropriate statement would be $(x-4)$ is not a factor'.							
3.	3. Accept any of the following for \bullet^3 :							
	• $f(4) = 0 \text{ so}(x-4) \text{ is a factor'}$							
	 'since remainder is 0, it is a factor' 							
	• the 0 from table linked to word 'factor' by e.g. 'so', 'hence', \therefore , ' \rightarrow ', ' \Rightarrow '.							
4.	4. Do not accept any of the following for \bullet^3 :							
	 double underlining the zero or boxing in the zero, without a comment 							
	• ' $x = 4$ is a factor', ' $(x+4)$ is a factor', ' $x = 4$ is a root', ' $(x-4)$ is a root'							
_	 the word 'factor' only, with no link. 							
5. ć	10 ga	ın •°,	4, -1, 2 must appear together in (a).	1 0		1 1	6	
6.	(x - 4)	x - 2	(x+1) leading to $(4, 0)$, $(2, 0)$ and $($	-1, 0) (only does not gain	•*.	
7.	(x - 2)	(x+1)) only, leading to $x = 2$, $x = -1$ does not	gair	ໂ ●ເ	as equation solved	d is not a cubic.	
8.	8. Candidates who attempt to solve the cubic equation subsequent to $x = -1, 2, 4$ and obtain different solutions,							
	or no	soluti	ons, cannot gain \bullet^6 .					

21 (b) The diagram shows the curve with equation $y = x^3 - 5x^2 + 2x + 8$.

The curve crosses the *x*-axis at P, Q and R.

Determine the shaded area.

Illustrative Scheme

Generic Scheme

21 (b) ic identify x_0 from working in (a) 2 •⁸ 0, 2 interpret appropriate limits ic •⁹ integrate one term correctly (but see Note 10) know and start to integrate SS •¹⁰ $\frac{1}{4}x^4 - \frac{5}{3}x^3 + \frac{2}{2}x^2 + 8x$ or equivalent complete integration pd •¹¹ $\left(\frac{1}{4}(2)^4 - \frac{5}{3}(2)^3 + 2^2 + 8 \times 2\right) - 0$ ic substitute limits •¹² $\frac{32}{3}$ or $10\frac{2}{3}$ but not a decimal approximation •¹² pd state area 6

Notes

- 9. Evidence for \bullet^7 and \bullet^8 may not appear until \bullet^{11} stage.
- 10. Where a candidate differentiates one or more terms at \bullet^9 , then \bullet^9 , \bullet^{10} , \bullet^{11} and \bullet^{12} are not available.
- 11. Candidates who substitute at \bullet^{11} , without integrating at \bullet^9 , do not gain \bullet^9 , \bullet^{10} , \bullet^{11} and \bullet^{12} .
- 12. For candidates who make an error in (a), \bullet^8 is only available if 0 is the lower limit and a positive integer value is used for the upper limit.
- 13. \bullet^{11} is only available where both limits are numerical values.
- 14. Candidates must show evidence that they have considered the lower limit 0 in their substitution at \bullet^{11} stage.

Regularly occurring responses Response 1 Response 2 Candidates who use Q throughout Dealing with negatives Candidate A **Candidate B** $\int_{0}^{Q} (x^{3} - 5x^{2} + 2x + 8) dx \qquad \bullet^{7} \qquad \times \\ = \left[\frac{1}{4} x^{4} - \frac{5}{3} x^{3} + \frac{2}{2} x^{2} + 8x \right]_{0}^{Q} \qquad \bullet^{8} \qquad \times \\ = \frac{1}{4} Q^{4} - \frac{5}{3} Q^{3} + Q^{2} + 8Q - 0 \qquad \bullet^{10} \qquad \times \\ \end{bmatrix}$ Q(-1, 0) $\times \bullet^7$ $= \begin{bmatrix} \frac{1}{4}x^4 - \frac{5}{3}x^3 + x^2 + 8x \end{bmatrix}_{0}^{10}$ $= \frac{1}{4}(-1)^4 - \frac{5}{3}(-1)^3 + (-1)^2 + 8(-1) - 0 \quad \checkmark \bullet^{11}$ $=-rac{61}{12}$ However, if Q is replaced by 2 at this cannot be negative so $\frac{61}{12} \times \bullet^{12}$ stage, and working continues, all 6 marks may still be available . but $=-rac{61}{12}$ $A = \frac{61}{12} \checkmark \bullet^{12}$

22 (a) The expression $\cos x - \sqrt{3} \sin x$ can be written in the form $k \cos(x+a)$ where k > 0 and $0 \le a < 2\pi$. Calculate the values of *k* and *a*.

C	Calculat	the values of k and a .							4
		Generic Scheme	е			Illu	strative S	Scheme	
22 (a)									
$ullet^1$	SS	use compound angle	e formula	\bullet^1	$k\cos x$	$x\cos a - k\sin x$	sin <i>a</i>	stated explicitly	
• ²	ic	compare coefficients	5	• ²	k cos ı	$a = 1$ and $k \sin x$	$a = \sqrt{3}$	stated explicitly	
•3	pd	process k		• ³	2 (do	not accept 🗸	4)		
• ⁴	pd	process a		• ⁴	$\frac{\pi}{3}$ but	t must be con	sistent wi	th \bullet^2	4
Notes			-						
1. Treat	k cos.	$x\cos a - \sin x \sin a$ as ba	ad form only if t	the e	quatio	ns at the \bullet^2 s	tage both	contain <i>k</i> .	
2. 2cos	$x\cos a$	$-2\sin x\sin a$ or $2(\cos x)$	$x\cos a - \sin x \sin x$	<i>a</i>) is a	accept	able for \bullet^1 and	\bullet^3 .		
3. Accep	pt k co	sa = 1 and $-k sin a = -$	$\sqrt{3}$ for \bullet^2 .						
4. \bullet^2 is	not av	ailable for $k \cos x = 1$ and	nd $k \sin x = \sqrt{3}$,	how	ever,	• ⁴ is still avai	lable.		
5. \bullet^4 is	only a	vailable for a single va	alue of <i>a</i> .						
6. Cand	idates	who work in degrees	and do not conv	vert t	to radi	an measure ii	n (a) do no	ot gain \bullet^4 .	
7. Cand	idates	may use any form of	the wave equati	on fc	or \bullet^1 ,	\bullet^2 and \bullet^3 , ho	wever, \bullet^4	is only available if	the
value	of a is	interpreted for the for	$\operatorname{rm} k\cos(x+a).$						
Regularly	y occu	rring responses	1.						
Kesponse	e 1 : M	issing information in v	working		Candi	date B			
					Cullul				
	2	$2\cos a = 1$	¹ X		COS	s <i>a</i> = 1	$\bullet^1 X$		
	-2	$2\sin a = -\sqrt{3}$	2		sir	$na = \sqrt{3}$	• ²	,	
	L	$\sqrt{3}$	³ √		tan	$a = \frac{\sqrt{3}}{1}$	• ³	(
	L	$anu = \frac{1}{1}$	⁴ ✓			$a = \frac{\pi}{2}$	•4 >	(
		$a = \frac{\pi}{3}$				$u = \frac{1}{3}$		- - -	
		3 marks out of 4]			0 marks out	t of 4	Not consistent	with
								evidence at \bullet^2 .	
Response	e 2 : Co	orrect expansion of <i>k</i> c	$\cos(x+a)$ and po	ssibl	e erroi	rs for \bullet^2 and	•4		
Candi	date (2	Candidat	e D			Candi	date E	
k cosa	1 = 1	· (• ²	$k\cos a = \sqrt{1-2}$	<u>/</u> 3 X	• ²		$k\cos a$	= 1	
K SIN U	$=\sqrt{3}$	π4	$k \sin a = 1$		π		k sin a	$=-\sqrt{3} \times \bullet^2$	
tan <i>u</i> =	$= \frac{1}{\sqrt{3}}$ so	$b u = \frac{1}{6} \mathbf{X} \bullet^*$	$\tan a = \frac{1}{\sqrt{3}}$	so a	$a = \frac{\pi}{6}$	● ⁴	tan <i>a</i> =	$=-\sqrt{3}$ so $a = \frac{5\pi}{3}$ \checkmark \bullet^4	
Response 3 : Labelling incorrect using $\cos(A+B) = \cos A \cos B - \sin A \sin B$ from formula list									
Candi	date F		Candidate	e G			Candi	date H	
$k \cos A \cos C$	b s B - k	$\sin A \sin B \times \bullet^1$	$k\cos A\cos b$	sB-k	k sin A	$\sin B \times \bullet^1$	$k\cos A$	$A\cos B - k\sin A\sin B$	$\mathbf{X} \bullet^1$
$k\cos a = 1$	L		$k\cos x = 1$	X ● ²	2		$k\cos B$	B = 1	
$k \sin a = \sqrt{1}$	<u>∫</u> 3 √ ·	2	$k \sin x = \sqrt{2}$	3			k sin B	$=\sqrt{3}$ \checkmark \bullet^2	
$\tan a = $	3 so a	$=\frac{\pi}{3}$ \checkmark \bullet ⁴	$\tan x = \sqrt{3}$	so x	$x = \frac{\pi}{3}$	× ● ⁴	tan B =	$=\sqrt{3}$ so $B = \frac{\pi}{3} \checkmark \bullet^4$	
		-			5			0	

22 (b) Find the points of intersection of the graph of $y = \cos x - \sqrt{3} \sin x$ with the *x* and *y* axes, in the interval $0 \le x \le 2\pi$. **3**

Generic Scheme	Illustrative Scheme
22 (b)	
• ⁵ ic interpret <i>y</i> -intercept	• ⁵ 1
• ⁶ ss strategy for finding roots	• ⁶ e.g. $2\cos\left(x+\frac{\pi}{3}\right) = 0$ or $\sqrt{3}\sin x = \cos x$
• ⁷ ic state both roots	$\bullet^7 \frac{\pi}{6}, \ \frac{7\pi}{6} \qquad \qquad$
Notes	
8. Candidates should only be penalised once for lea	wing their answer in degrees in (a) and (b).
10. Correct roots without working cannot gain \bullet^6 bu	t will gain \bullet^7 .
11. Candidates should only be penalised once for no	t simplifying $\sqrt{4}$ in (a) and (b).
Regularly occurring responses	
Response 4 : Communication for ● ⁵ Candidate I	Candidate J
(1, 0) without working. $\mathbf{X} \bullet^5$	$\cos 0 - \sqrt{3} \sin 0 = 1 \checkmark \bullet^5$ so (1, 0).
Response 5 : Follow through from a wrong value of	2
Candidate K	Candidate L
From (a) $a = \frac{\pi}{6}$ • X	From (a) $a = 60^{\circ} \times \bullet^4 \bullet^6 \times$
then in (b) $x = \frac{\pi}{3}$, $\frac{4\pi}{3}$ only $\bullet^7 \checkmark$	then in (b) $x = 30^\circ$, 210° only • ⁷ \checkmark Note 10
Response 6 : Root or graphical approach	
Candidate M Candi	date N Candidate O
$\frac{\pi}{2} - \frac{\pi}{3}$ and $\frac{3\pi}{2} - \frac{\pi}{3} \checkmark \bullet^6$ (a) by	
$=\frac{\pi}{6}$ and $\frac{7\pi}{6}$ \checkmark \bullet^7 (b)	260
	90 270
	$\int \mathbf{e}^{6}$ moved 60° to left $\sqrt{\mathbf{e}}$
N N	Then $x = 30^\circ, 210^\circ$ \checkmark \bullet Cuts x-axis at $\frac{2}{6}, \frac{3}{3}$ \checkmark \bullet
Candidate P	e
$2\cos x \times \frac{1}{2} - 2\sin x \times \frac{\sqrt{3}}{2} = 0$ • ⁶ ×	
$\cos x - \sqrt{3}\sin x = 0 \qquad \bullet^7 \bigstar$	$x - \frac{\pi}{3}$ is penalised as $x + \frac{\pi}{3}$ obtained in (a).
Response 8 : Transcription error in (b)	However \bullet^5 and \bullet^7 are still available as
Candidate Q	follow through. See Note 9.
(a) correct $\mathbf{X} \bullet^6$	
(b) $2\cos\left(x-\frac{\pi}{3}\right) = 0$ so $x = \frac{5\pi}{6}$, $\frac{11\pi}{6} \checkmark \bullet^7$	
$y = 2\cos\left(0 - \frac{\pi}{2}\right) = 2\cos\left(-\frac{\pi}{2}\right) = 1 \checkmark \bullet^{5}$	

-		Generic Scheme			Illustrati	ve Scheme	2	
23 (a) • ¹ • ² • ³ • ⁴	ss ss ic ic	find midpoint of PQ find gradient of PQ interpret perpendicular state equation of perp.	gradient bisector	• ¹ (1, 3) • ² -3 • ³ $\frac{1}{3}$ • ⁴ $y-3=\frac{1}{3}(x)$	-1)			4
Notes								
1. \bullet^4 is 2. Cand	only a lidates	available if a midpoint an s who use $y = mx + c$ mus	d a perpendi t obtain a nu	icular gradient a merical value fo	re used. or <i>c</i> before \bullet^4 i	s available.		
Regulari		arring responses	r midnaint a	r no midnoint				
	C 1 1 1 1 1 1	Candidate A midpoint M(2, -6) × $m_{MQ} = -5 \checkmark$ $m_{\perp} = \frac{1}{5} \checkmark$ $y - (-6) = \frac{1}{5}(x - 2) \checkmark$	$\begin{array}{c} \mathbf{X} \bullet^{1} \\ \mathbf{x} \bullet^{2} \\ \mathbf{x} \bullet^{3} \\ \mathbf{x} \bullet^{4} \end{array}$	Candid $m_{\rm PQ} = -$ $m_{\perp} = \frac{1}{3}$ using F	late B -3 \checkmark \checkmark $R, y - (-2) = \frac{1}{3}($	(x-1) X	$\begin{array}{c} X \bullet^{1} \\ \checkmark \bullet^{2} \\ \checkmark \bullet^{3} \\ X \bullet^{4} \end{array}$	
23 (b) Fin	nd the	equation of ℓ_2 which is para	llel to PQ and	passes through F	R(1, -2).			2
		Generic Scheme			Illustrati	ve Scheme	•	
23 (b) • ⁵ • ⁶	ic ic	use parallel gradients state equation of line		• ⁵ -3 • ⁶ $y - (-2) = -$	stat −3(<i>x</i> −1)	ed, or impli	ed by \bullet^6	2
Notes								
3. ● ⁶ is	only a	available to candidates wl	10 use R and	their gradient o	of PQ from (a).			
Regularl	у оссі	arring responses						
Response Cand y-(-	e 2 : N lidate 2) =	Not using parallel gradient C $\frac{1}{3}(x-1) \times $ $\bullet^5 \times $ $\bullet^6 \times $	for equation Candidate Parallel so so $m = \frac{1}{3}$ y y - (-2) = -	n D same gradients $\frac{1}{3}(x-1)$	• ⁵ X y • ⁶ X y If $m_{PQ} = -3$	andidate E $i = -3 \checkmark$ $-(-2) = \frac{1}{3}(x)$ sonly do not	-1) × • ⁵ •6	√ ×

23 (c) Find the point of intersection of ℓ_1 and ℓ_2 .

		Generic Scheme	Illustrative Scheme]			
23 (c) • ⁷	SS	use valid approach	• ⁷ e.g. $x-3y = -8$ and $9x+3y = 3$ or $-3x+1 = \frac{1}{3}x + \frac{8}{3}$ or $3(3y-8) + y = 1$				
• ⁸	pd pd	solve for one variable solve for other variable	• ⁸ e.g. $x = -\frac{1}{2}$ • ⁹ e.g. $y = \frac{5}{2}$	3			
Notes							
 4. Neither 5. ●⁷ , ●⁸ Equation Give Use Use 	r x · and ate ze e answ R for the se	-3y = -8 and $3x + y = 1$ nor $y = -•9 are not available to candidates whereeroswers only, without workingrequations in both (a) and (b)ame gradient for the lines in (a) and$	$-3x+1$ and $3y = x+8$ are sufficient to gain \bullet^7 . tho: .(b).				
23 (d) He	ence f	ind the shortest distance between PQ an	nd ℓ,.	2			
		Generic Scheme	 Illustrative Scheme				
23 (d) • ¹⁰	ss pd	identify appropriate points calculate distance	• ¹⁰ (1, 3) and $\left(-\frac{1}{2}, \frac{5}{2}\right)$ • ¹¹ $\sqrt{\frac{5}{2}}$ accept $\frac{\sqrt{10}}{2}$ or $\sqrt{2 \cdot 5}$	2			
Notes							
6. • ¹⁰ and • ¹¹ are only available for considering the distance between the midpoint of PQ and the candidate's answer from (c) or for considering the perpendicular distance from P or Q to ℓ_2 .							
7. At least one coordinate at \bullet^{10} stage must be a fraction for \bullet^{11} to be available.							
8. There s	8. There should only be one calculation of a distance to gain \bullet^{11} .						
Regularly	Regularly occurring responses						
Response 3 Candidate (1, 3), (1, - $d = 5 \\ \bigstar \bullet^{11}$ Response 4 Candidate	3 : Fo F - 2) X 4 : Fo	llowing through from correct (a), (b) • ¹⁰ ollowing through from correct (a), (b)) and (c)) and (c)				
(1, 3), $\left(-\frac{1}{2}\right)^{-1}$ PR = $\sqrt{5}$, C	$\left(\frac{1}{2}, \frac{5}{2}\right)$ QR= $\sqrt{2}$	$\checkmark \bullet^{10}$ $\sqrt{125}, d = \sqrt{2 \cdot 5}$ test distance $\checkmark \bullet^{11}$	If reference was made to this being the perpendicular distance then • ¹¹ would be available.				
so $\sqrt{2}$ is shortest distance. $\sqrt{2}$							

3