

Throughout this question, coordinates written as components and vice versa are treated as bad form.

Generic Scheme	Illustrative Scheme
1 (a) • ¹ ic state coordinates of B	• ¹ (4, 4, 0)
1 (b)	
• ² pd state components of \overrightarrow{DB}	
\bullet^3 ic state coordinates of M	• ³ (2, 0, 0) stated, or implied by • ⁴
• ⁴ pd state components of $\overrightarrow{\rm DM}$	
Regularly occurring responses	
Response 1A (Transcription error for D) $\overrightarrow{DB} = \begin{pmatrix} 4\\4\\0 \end{pmatrix} - \begin{pmatrix} 2\\6\\6 \end{pmatrix} = \begin{pmatrix} 2\\-2\\-2\\-6 \end{pmatrix} \times \bullet^2$ $\overrightarrow{DM} = \begin{pmatrix} 2\\0\\0 \end{pmatrix} - \begin{pmatrix} 2\\6\\6 \end{pmatrix} = \begin{pmatrix} 0\\-6\\-6 \end{pmatrix} \checkmark \bullet^3$ $\checkmark \bullet^4$	Response 1B (Transcription error for D) $\overrightarrow{DB} = \begin{pmatrix} 2 \\ -2 \\ -6 \end{pmatrix} \text{ and } \overrightarrow{DM} = \begin{pmatrix} 0 \\ -6 \\ -6 \end{pmatrix} \text{ with no working.}$
2 marks out of 3	0 marks out of 3
Response 24	Response 2B
Response 2A $\overrightarrow{DB} = \mathbf{d} + \mathbf{b} = \begin{pmatrix} 6\\ 6\\ 6 \end{pmatrix} \times \mathbf{e}^2$	Response 2B $\overrightarrow{DB} = \begin{pmatrix} 6\\ 6\\ 6 \end{pmatrix}$ and $\overrightarrow{DM} = \begin{pmatrix} 4\\ 2\\ 6 \end{pmatrix}$ with no working.
$\overrightarrow{DM} = \mathbf{d} + \mathbf{m} = \begin{pmatrix} 4 \\ 2 \\ 6 \end{pmatrix} \checkmark \bullet^3 \\ \checkmark \bullet^4$	
2 marks out of 3	0 marks out of 3

Detailed Marking Instructions : Higher Mathematics 2011 Fina	

2 I	Functi	ions f, g and h are defined on the set of real numbers by		
		• $f(x) = x^3 - 1$ • $g(x) = 3x + 1$ • $h(x) = 4x - 5$		
((a)	Find $g(f(x))$.	2	
((b)	Show that $g(f(x)) + x h(x) = 3x^3 + 4x^2 - 5x - 2$.	1	

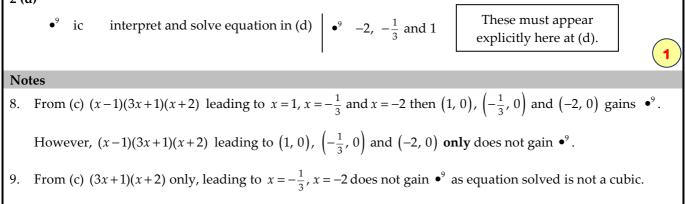
	Generic Scheme	I	llustrative Scheme	
2 (a)				
•1	ic interpret notation	• $g(x^3 - 1)$	stated, or implied by \bullet^2	
• ²	ic complete process	• $g(x^3 - 1)$ • $3(x^3 - 1) + 1$		
Notes				
1. $3x^3 - 2$	without working gains only 1 m	ark.		
2. $f(g(x))$) loses \bullet^1 but will gain \bullet^2 for $(3x)$	$(+1)^3 - 1$.		\frown
3. $f(x) \times g$	$g(x)$ loses both \bullet^1 and \bullet^2 .			(2)

2 ((b)
-----	-----

2(0)		
• ³ ic substitute and complete	• ³ $3(x^3-1)+1+x(4x-5)$ = $3x^3+4x^2-5x-2$	stated explicitly
	or $3(x^{3}-1)+1+4x^{2}-5x$ $= 3x^{3}+4x^{2}-5x-2$	stated surflicities
	$= 3x^{2} + 4x^{2} - 5x - 2$	stated explicitly
	$3x^3 - 2 + x(4x - 5)$	
	$= 3x^3 + 4x^2 - 5x - 2$	stated explicitly
	or	
	$3x^{3} - 2 + 4x^{2} - 5x$ $= 3x^{3} + 4x^{2} - 5x - 2$	stated symbolicitly
	= 3x + 4x - 5x - 2	stated explicitly
Regularly occurring responses		Ŭ
CAVE : Watch out for erroneous working leading	g to the required cubic.	
Response 1 $3x^3 - 2 + x(4x + 5) = 3x^3 + 4x^2 - 5x - 2x^3$	2 × ● ³	As the form of the
Response 2 $3x^3 - 4 + x(4x - 5) = 3x^3 + 4x^2 - 5x - 2$	2 × ● ³	As the form of the answer was given in the question, this mark is not available.
Response 3 From (a) $(3x+1)^3 - 1$		
In (b) $3x^{3}+3-1+x(4x-5) = 3x$ $= 3x$	$x^{3} + 2 + 4x^{2} - 5x \times e^{3}$ $x^{3} + 4x^{2} - 5x - 2$	
Response 4A From (a) $g(f(x)) = 3x^3 - 2$	Response 4B From (a) $g(f(x))$	
In (b) $xh(x) = 4x^2 - 5x$	In (b) $3x^2 - 2x^2$	
$\checkmark 3x^3 + 4x^2 - 5x - 2 \checkmark \bullet^3$	$=3x^{3}+$	$4x^2 - 5x - 2$

Note : \bullet^3 is not available to candidates who leave their answer as $3x^3 - 2 + 4x^2 - 5x$.

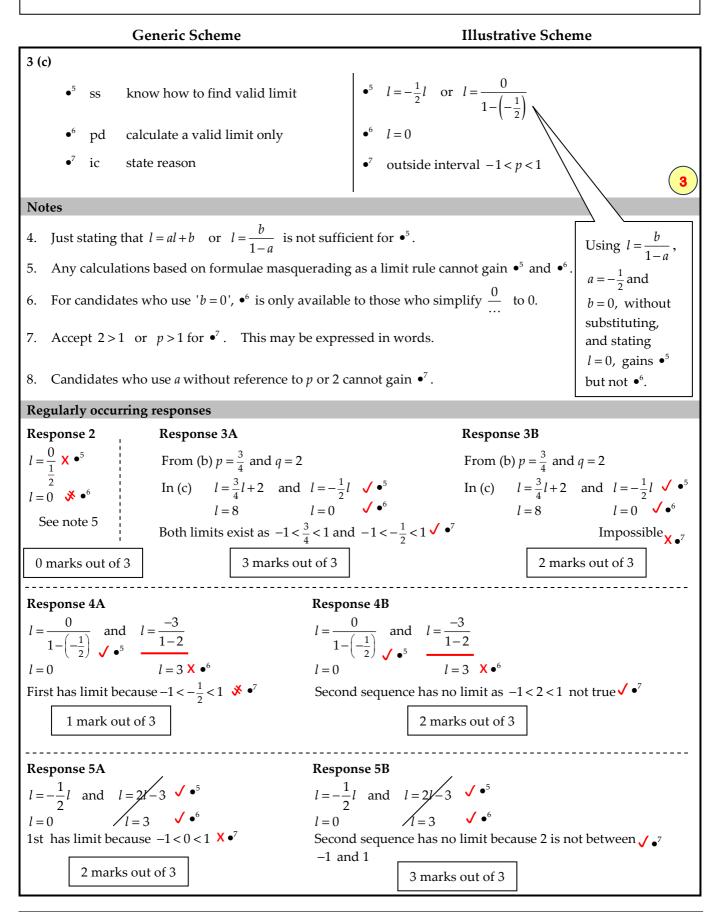
1

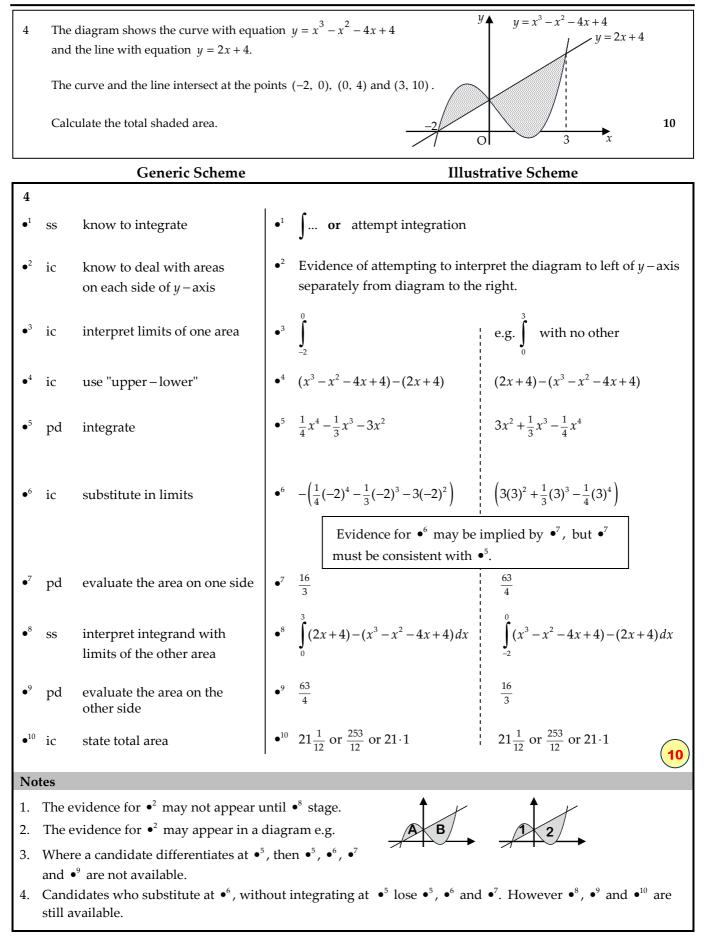

(c) (i) Show that
$$(x-1)$$
 is a factor of $3x^3 + 4x^2 - 5x - 2$.

(ii) Factorise $3x^3 + 4x^2 - 5x - 2$ fully.

(d) Hence solve g(f(x)) + x h(x) = 0.

2

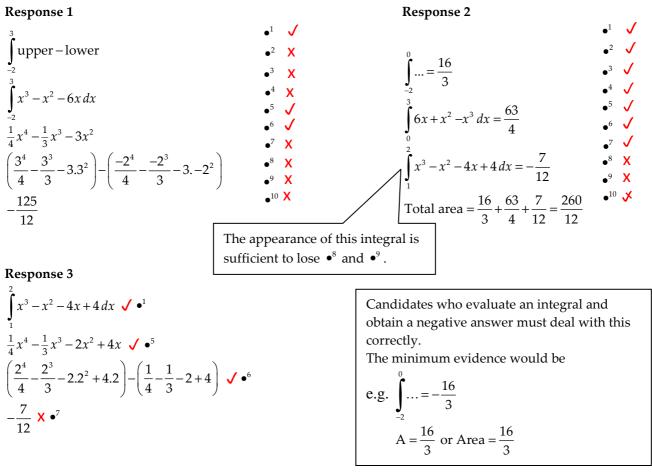

Illustrative Scheme Generic Scheme 2 (c) Method 1: Using synthetic division 13 \bullet^4 know to use x = 14 -5 -2 SS If **only** the word 'factor' appears, it must be linked to the 0 in the table. The link could be as little as 'so', '::', ' \rightarrow ', ' \Rightarrow ' or 'hence'. complete evaluation •5 1 3 4 -5 pd -2 The word 'factor' **only**, with no 2 3 link, does not gain \bullet^6 . З state conclusion "remainder is zero so (x-1) is a factor", accept "(x-1) is a factor" ic •⁷ $3x^2 + 7x + 2$ find quadratic factor stated, or implied by \bullet^8 ic factorise completely (x-1)(3x+1)(x+2)stated explicitly pd Method 2: Using substitution and inspection know to use x = 13+4-5-2=0• (x-1) is a factor $(x-1)(3x^2+7x+2)$ stated, or implied by \bullet^8 (x-1)(3x+1)(x+2)stated explicitly 5 Notes 4. •⁶ is only available as a consequence of the evidence for •⁴ and •⁵. 5. Communication at \bullet^6 must be consistent with working at \bullet^5 . i.e. candidate's working must arrive legitimately at zero before \bullet^6 is awarded. If the remainder is not 0 then an appropriate statement would be '(x-1) is not a factor'. Unacceptable statements : x = 1 is a factor, (x + 1) is a factor, x = 1 is a root, (x - 1) is a root etc. 6. •⁹ cannot be awarded for solving $3x^3 + 4x^2 - 5x - 2 = 0$ in (c). 7. 2 (d)



3 (a) A sequence is defined by $u_{n+1} = -\frac{1}{2}u_n$ with $u_0 = -16$.		
Write down the value	Write down the values of u_1 and u_2 .	
(b) A second sequence is	given by 4, 5, 7, 11,	
It is generated by the	recurrence relation $v_{n+1} = pv_n + q$ with $v_1 =$	4.
Find the values of <i>p</i> a		3
Generic S	cheme	Illustrative Scheme
3 (a)		
• ¹ pd find terms of se	equence $e^1 u_1 = 8 \text{ and } u_2$	$u_2 = -4$ Accept "8 and -4 "
3 (b)		
• ² ic interpret seque	nce $e.g. 4p+q$	=5 and $5p+q=7$
\bullet^3 ss solve for one va	ariable $\bullet^3 p = 2$ or	=5 and 5p+q=7 q=-3 p=2
• ⁴ pd state second va	riable $e^4 q = -3$ or	p=2
Notes)
1. Candidates may use $7p+q =$	= 11 as one of their equations at \bullet^2 .	
2. Treat equations like $p4 + q =$	5 or $p(4) + q = 5$ as bad form.	
3. Candidates should not be pe	enalised for using $u_{n+1} = pu_n + q$.	
Regularly occurring responses		
Response 1A (No working)	Response 1B (Only one equation)	Response 1C (By verification)
p = 2 and $q = -3$	4p + q = 5	p = 2 and $q = -3$ (ex nihilo)
or $v_{n+1} = 2v_n - 3$	p = 2 and $q = -3$	$v_2 = 8 - 3 = 5$ and $v_3 = 10 - 3 = 7$
1 mark out of 3	1 mark out of 3	- -
		2 marks out of 3

3 (c) Either the sequence in (*a*) or the sequence in (*b*) has a limit.

- (i) Calculate this limit.
- (ii) Why does the other sequence not have a limit?

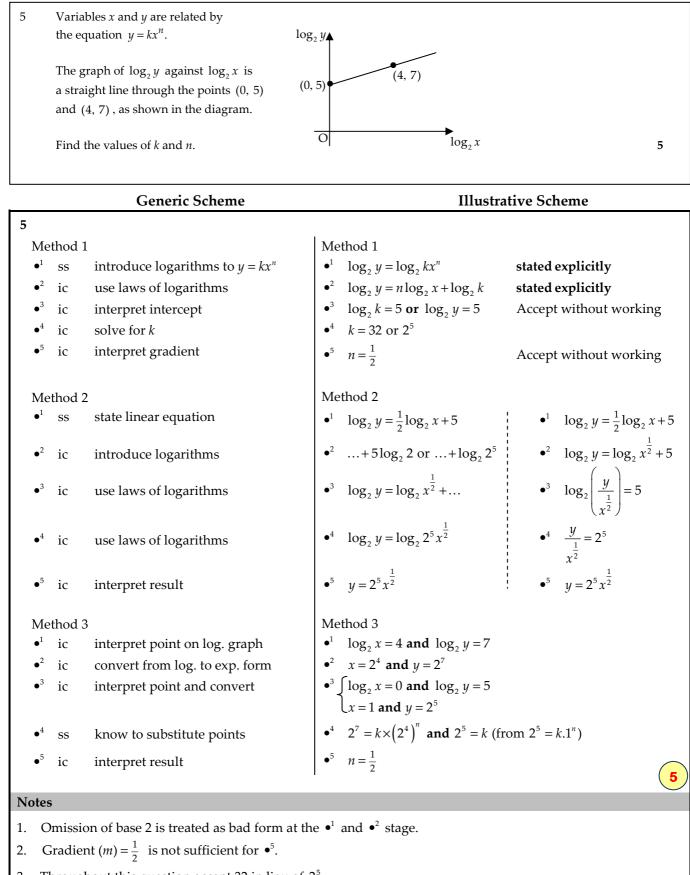


Regularly occurring responses

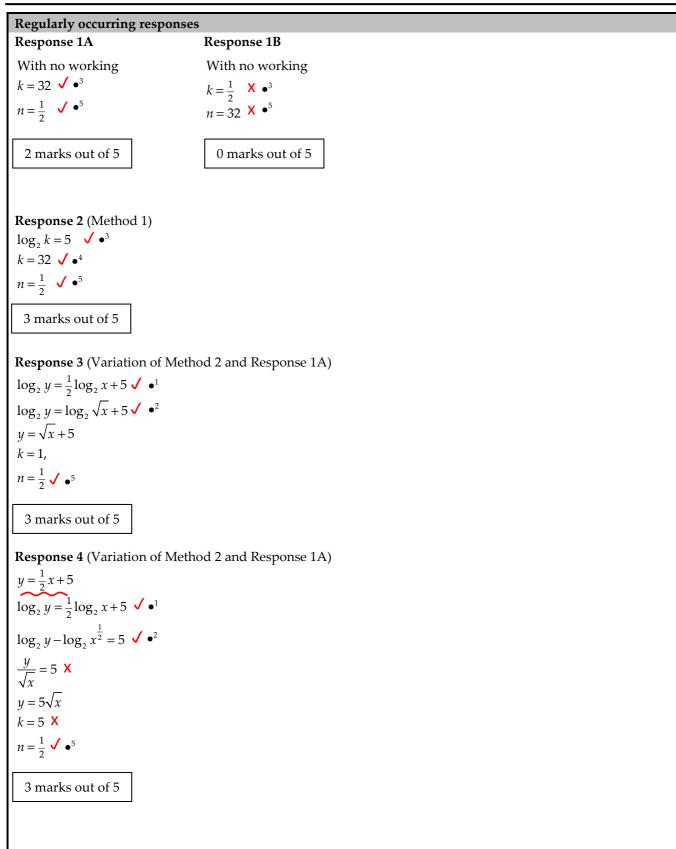
General comment to markers

In this question you should scan the entire response before starting to mark. Where errors occur in the integration/evaluation, use \bullet^3 to \bullet^7 to mark the better solution and \bullet^8 and \bullet^9 to mark the poorer solution.

A tabular approach to allocating marks is particularly useful in questions like this, where a candidate's response is spread over several pages, or contains working which appears randomly set out. Response 1 indicates the approach to take here.



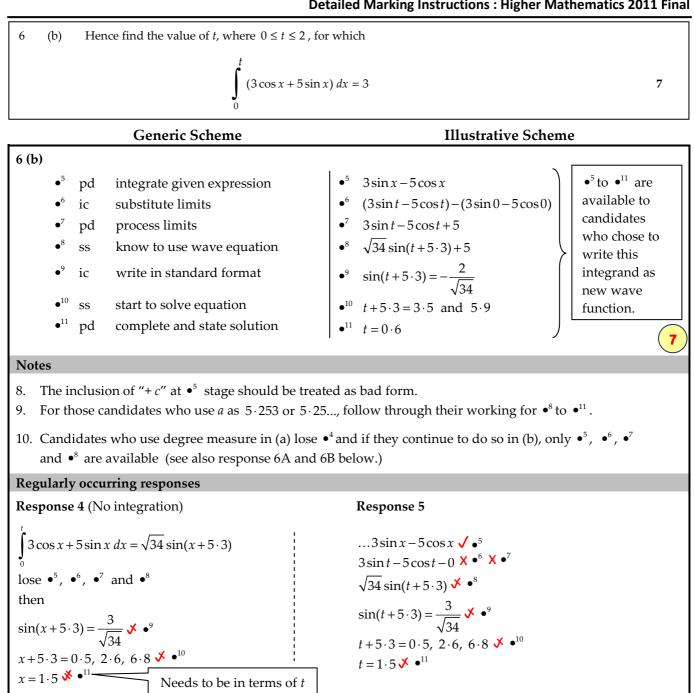
N.B. If due to an error the evaluation is negative it must be dealt with correctly. The responses below illustrate what is required under this circumstance. If both integrals lead to negative values only \bullet^7 or \bullet^9 is lost.


 Response 4A
 Response 4B
 Response 4C

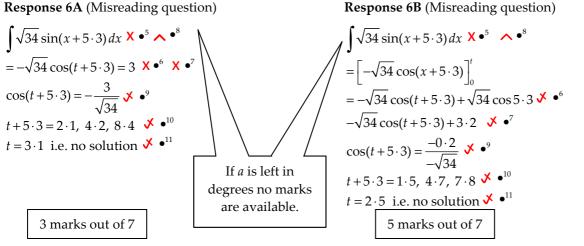
 $\int_{0}^{3} \dots \frac{63}{4}$ $\int_{0}^{3} \dots \frac{63}{4}$ $\int_{0}^{3} \dots \frac{63}{4}$
 $\int_{-2}^{0} 6x + x^{2} - x^{3} dx \times \bullet^{8}$ $\int_{-2}^{0} 6x + x^{2} - x^{3} dx \times \bullet^{8}$ $\int_{-2}^{0} 6x + x^{2} - x^{3} dx \times \bullet^{8}$
 $= \dots$ $= \dots$ $= \dots$ $= \dots$ $= \dots$
 $= -\frac{16}{3} \times \bullet^{9}$ $= -\frac{16}{3} \times \bullet^{9}$ $= -\frac{16}{3} \times \bullet^{9}$ $= -\frac{16}{3} \times \bullet^{9}$

 Area $= \frac{63}{4} + -\frac{16}{3} \times \bullet^{10}$ Area $= \frac{63}{4} + \frac{16}{3} = \frac{253}{12} \checkmark \bullet^{10}$ $= \frac{16}{3} \times \bullet^{9}$
 $Area = \frac{63}{4} + \frac{16}{3} = \frac{253}{12} \checkmark \bullet^{10}$ $Area = \frac{63}{4} + \frac{16}{3} = \frac{253}{12} \checkmark \bullet^{10}$

- 3. Throughout this question accept 32 in lieu of 2^5 .
- 4. Markers should not pick and choose within methods. Use the method which gives the candidate the highest mark.



(a) The expression $3 \sin x - 5 \cos x$ can be written in the form $R \sin(x + a)$ where R > 0 and $0 \le a < 2\pi$.


Calculate the values of *R* and *a*.

6

Generic Scheme Illustrative Scheme 6 (a) use compound angle formula $R\sin x\cos a + R\cos x\sin a$ stated explicitly SS •² $R \cos a = 3$ and $R \sin a = -5$ stated explicitly compare coefficients ic $\sqrt{34}$ (Accept 5.8) pd process R with or without working pd process a (Accept $5 \cdot 3$) must be consistent with \bullet^2 Notes 1. Treat as bad form the use of *k* instead of *R*. 2. Treat $R \sin x \cos a + \cos x \sin a$ as bad form only if the equations at the \bullet^2 stage both contain *R*. $\sqrt{34} \sin x \cos a + \sqrt{34} \cos x \sin a$ or $\sqrt{34} (\sin x \cos a + \cos x \sin a)$ is acceptable for \bullet^1 and \bullet^3 . 3. •² is not available for $R \cos x = 3$ and $R \sin x = -5$, however, •⁴ is still available. 4. \bullet^4 is only available for a single value of *a*. 5. 6. Candidates who work in degrees and don't convert to radian measure lose •⁴. Do not accept $\frac{301\pi}{180}$ or $\frac{5\pi}{3}$ 7. Candidates may use any form of the wave equation for \bullet^1 , \bullet^2 and \bullet^3 , however, \bullet^4 is only available if the value of *a* is interpreted for the form $R\sin(x+a)$. **Regularly occurring responses** For \bullet^2 and \bullet^4 **Response 1A Response 1B Response 1C** $R\cos a = 3 R\sin a = 5 \times \bullet^2$ $R\cos a = 3 R\sin a = -5 \checkmark \bullet^2$ $R\cos a = 3 R\sin a = 5 \times \bullet^2$ $\tan a = \frac{5}{3}$ $\tan a = \frac{3}{5}$ $\tan a = -\frac{3}{5}$ a = 1.03 **×** •⁴ $a = 0.54 \times \bullet^4$ $a = 5 \cdot 74 \times \bullet^4$ **Response 2 Response 3** $R\sin(x-a) = R\sin x \cos a - R\cos x \sin a \checkmark \bullet^1$ $k \sin x \cos a + k \cos x \sin a \checkmark \bullet^1$ $R\cos a = 3$ $R\sin a = 5 \checkmark \bullet^2$ $\cos a = 3$ $\sin a = -5 \times 10^{-5}$ $R = \sqrt{34} \checkmark \bullet^3$ $R = \sqrt{34}$ \checkmark •³ a = 1.03 ***** •⁴ $a = 5 \cdot 3$ ***** •⁴ See note 7 Not consistent with working at \bullet^2 3 marks out of 4 2 marks out of 4

Response 6A (Misreading question)

7 Circle C ₁ has equation $(x + 1)^2 + (y - 1)^2 = 121$.		
7 Circle C_1 has equation $(x+1) + (y-1) = 121$.		
A circle C ₂ with equation $x^2 + y^2 - 4x + 6y + p = 0$ is drawn inside C ₁ .		
The circles have no points of contact.		
What is the range of values of <i>p</i> ?	9	
Generic Scheme	Illustrative Scheme	
7 • ¹ ic state centre of C_1 • ² ic state radius of C_2	• $(-1, 1)$	
• ² ic state radius of C_1 • ³ ic state centre of C_2	• ² 11 Do not accept $\sqrt{121}$ • ³ (2, -3)	
\bullet^4 pdfind radius of C_2 in terms of p \bullet^5 icinterpret upper bound for p	• ⁴ $\sqrt{13-p}$ Accept <i>c</i> in lieu of <i>p</i> • ⁵ $p < 13$	
 •⁶ ic find distance between centres (<i>d</i>) •⁷ ss identify relevant relationship 	• ⁶ 5 stated explicitly • ⁷ $\sqrt{13-p} < 6$ or $r_2 + d < 11$ or $r_2 < 6$	
 •⁸ ic develop relationship by squaring •⁹ pd find lower bound for <i>p</i> 	• $\sqrt{10} p < 0$ or $r_2 + w < 11$ or $r_2 < 0$ • $13 - p < 36$ • $p > -23$	
r	• p>-23	
Notes)	
 Treat as bad form the use of <i>c</i> in lieu of <i>p</i>. The evidence for •⁷ must involve an inequality, but 		
3. Treat $\sqrt{13} - p$ as bad form as long as it is clear that the		
	lose both \bullet^7 and \bullet^9 , however, \bullet^8 may still be available.	
5. • ⁹ is only available to candidates who solve an inequ	ation involving a negative coefficient of <i>p</i> .	
Regularly occurring responses	n a	
Response 1AResponse 1BMarks 1 to 3 gained $C_1 = (-1, 1) \checkmark_{\bullet^1} C$	Response 2 $C_2 = (2, -3) \checkmark \bullet^3$ For marks 7 to 9	
$d = 5 \checkmark \bullet^6$	$\sqrt{13} - \sqrt{p} < 6 \times \bullet^8$	
$\sqrt{-2^2 + 3^2 - p} < 11 \qquad \qquad \sqrt{13 + p} < 11 \checkmark \bullet$		
$\sqrt{13-p} < 11 $ $\checkmark $ $\bullet^7 $ $\checkmark $ $\bullet^4 $ $13+p < 121 $ $\checkmark $ \bullet		
$13 - p < 121 \checkmark \bullet^{8} \qquad p < 108 \checkmark \bullet^{9}$	$p > 133 \times \bullet^9$	
$p > -108$ \checkmark • ⁹	Penalise the use of	
\leq and/or \geq once only.		
Response 3 (see note 4) Response 4	Response 5	
$\sqrt{13-p} = 0 \qquad \qquad \sqrt{13-p} \ge 0$	$0 < \sqrt{13 - p} < 6 \checkmark^7$	
$p = 13 \times \bullet^5 \qquad \qquad p \le 13 \times \bullet^5$	$0 < 13 - p < 36 \checkmark 8$	
$\sqrt{13-p} = 6 \checkmark \bullet^7 \qquad \sqrt{13-p} \le 6 \checkmark \bullet^7$	-13 < -p < 23	
$13 - p = 36 \checkmark \bullet^{8} \qquad p \ge -23 \checkmark \bullet^{9}$ $p > -23 \checkmark \bullet^{9}$	so $p < 13$ and $p > -23 \checkmark 9^9$	
	or -23	
	$01 - 25$	

Regularly occurring responses

Response 6 $(x-2)^2 + (y+3)^2 = 13 - p \And 13 - p < 121 \And \bullet^4 \And \bullet^7$ $p > -108 \checkmark \bullet^9$