Paper 2

R 0011	311 37	OCCULTETING.	rochoncoc
negu	lally	occurring	responses

Response 1	Response 2	Incorrect V stated	Response 3
(a) M(2, 0, 0) $\times \bullet^1$ N(4, 2, -1) $\times \bullet^2$	(b) V(0, 3, 2)		(a) M(0, 2, 0) \times \bullet^1 N(4, 2, 2) \checkmark \bullet^2
$\overline{VM} = \begin{pmatrix} 2 \\ -2 \\ -3 \end{pmatrix} \not{X} \bullet^{3}$ (b) $\overline{VM} = \begin{pmatrix} 2 \\ -2 \\ -3 \end{pmatrix}$ Consistent with (a)	$\overrightarrow{VM} = \begin{pmatrix} 0\\ -2\\ -2\\ \end{array}$ $\overrightarrow{VN} = \begin{pmatrix} 4\\ -1\\ 0 \end{pmatrix}$	$) \times \bullet^{3} $	$1 \text{ mark out of } 2$ (b) $\overline{VM} = \begin{pmatrix} -4 \\ 0 \\ -3 \end{pmatrix} \times \bullet^{3} \qquad V(4, 2, 3) $ used in
$\overrightarrow{\text{VN}} = \begin{pmatrix} 4\\0\\-1 \end{pmatrix} \checkmark \bullet^4$ From diagram 2 marks out of 2	1 mark ou	it of 2	$\overrightarrow{VN} = \begin{pmatrix} 0\\0\\-1 \end{pmatrix} \times \bullet^4 \qquad both but not stated$ $0 \text{ marks out of } 2$

2 (*a*) $12\cos x^\circ - 5\sin x^\circ$ can be expressed in the form $k\cos(x+a)^\circ$, where k > 0 and $0 \le a < 360$. Calculate the values of *k* and *a*.

Generic Scheme	2		Illustrative Scheme
(a)			
• ¹ ss use addition formu	ıla	• ¹ $k \cos x^{\circ} \cos x$	$a^{\circ} - k \sin x^{\circ} \sin a^{\circ}$ or $k (\cos x^{\circ} \cos a^{\circ} - \sin x^{\circ} \cos a^{\circ})$ stated explicitly
• ² ic compare coefficien	ts	• ² $k\cos a^\circ = 12$	2 and $k \sin a^\circ = 5$ or $-k \sin a^\circ = -5$ stated explicitly
• ³ pd process k • ⁴ pd process a		 ³ 13 ⁴ 22 ⋅ 6 	no justification required, but do not accept $\sqrt{169}$ accept any answer which rounds to 23
Notes			
1. Do not penalise the omission	of the degree symb	ol.	
2. Treat $k \cos x^\circ \cos a^\circ - \sin x^\circ \sin x$	a° as bad form only	, if the equatio	ons at the \bullet^2 stage both contain k.
3. $13\cos x^{\circ}\cos a^{\circ} - 13\sin x^{\circ}\sin a^{\circ}$	or 13($\cos x^\circ \cos a^\circ -$	$\sin x^{\circ} \sin a^{\circ}$) is	acceptable for \bullet^1 and \bullet^3 .
4. • ² is not available for $k \cos x^{\circ}$	= 12 and $k \sin x^\circ = 5$	5 or $-k\sin x^\circ$:	$=-5$, however, \bullet^4 is still available.
5. \bullet^4 is lost to candidates who g	ive <i>a</i> in radians onl	V.	
6. \bullet^4 may be gained only as a co	preduence of using	y. vevidence at •	r^2 starp
 Candidates may use any form 	of the wave equat	ion for \bullet^1 , \bullet^2	and \bullet^3 , however \bullet^4 is only available if the
value of <i>a</i> is interpreted for th	e form $k\cos(x+a)^\circ$		
Regularly occurring responses			
Response 1A	Response 1B		Response 2
$k(\cos x^{\circ} \cos a^{\circ} - \sin x^{\circ} \sin a^{\circ}) \checkmark \bullet^{1}$	$k\cos x\cos a - k\sin a$	$\int x \sin a \sqrt{\bullet^1}$	$k\cos(x-a)$
$\sin a = 5 \times e^2$	$k = 13 \checkmark \bullet^3$	$\bigwedge \bullet^2$	$= k \cos x \cos a + k \sin x \sin a \checkmark \bullet^{-1}$ = 13 cos x cos a + 13 sin x sin a $\checkmark \bullet^{-3}$
$\cos a = 12$	$\tan a^\circ = \frac{5}{12}$		
$\tan a^\circ = \frac{5}{12}$	$a = 22 \cdot 6 \checkmark$	•4	$13\cos a = 12$ $13\sin a = -5$ \checkmark \bullet^2
$a = 22 \cdot 6 \bigstar \bullet^4$			then $a = 22 \cdot 6 \times \bullet^4$ See note 6
$13\cos(x+22\cdot 6)$			
√ • ³			or $a = 337 \cdot 4 \times \bullet^*$ See note 7
2 marks out of 4	2 marks	out of 4	3 marks out of 4
			···
Response 3A	Response 3B		Response 4
$k\cos x^{\circ}\cos a^{\circ}-\sin x^{\circ}\sin a^{\circ}$	$k\cos x^{\circ}\cos a^{\circ}-s$	$ in x^\circ \sin a^\circ $	$k\cos x^{\circ}\cos a^{\circ} - k\sin x^{\circ}\sin a^{\circ} \checkmark \bullet^{1}$
$k\sin a = 5$ $\sqrt{\bullet^1}$ $\sqrt{\bullet^2}$	$k \sin a = 12$	$\bullet^1 \times \bullet^2$	$k\cos a = 12$ $\times e^2$
$k\cos a = 12$	$k\cos a = 5$	/~	$k \sin a = -5$ See note 6
$k = 13 \tan a^\circ = \frac{12}{5} \times \bullet^4$	$k = 13$ $\tan a^\circ$	$=\frac{12}{5}$	$k = 13$ $\tan a^\circ = -\frac{5}{12}$
$u = 67 \cdot 4$	<i>a</i> :	= 0/ · 4 • · · ·	$u = 337 \cdot 4$ \checkmark
3 marks out of 4	3 marks out	t of 4	3 marks out of 4

4

2 (*b*) (i) Hence state the maximum and minimum values of 12 cos x° - 5 sin x°.
(ii) Determine the values of *x*, in the interval 0 ≤ x < 360, at which these maximum and minimum values occur.

3

3 (a) (i) Show that the line with equation y = 3 - x is a tangent to the circle with equation $x^2 + y^2 + 14x + 4y - 19 = 0$.

(ii) Find the coordinates of the point of contact, P.

			Generic Scheme	Illustrative Scheme
(a)	• ¹	SS	substitute	• ¹ $x^{2} + (3-x)^{2} + 14x + 4(3-x) - 19 = 0$
	• ² • ³ • ⁴	pd ic ic	express in standard form start proof complete proof	Method 1 : Factorising • ² $2x^2 + 4x + 2$ • ³ $2(x+1)(x+1)$ = 0 see note 1 • ⁴ equal roots so line is a tangent
				Method 2 : Discriminant • $2x^2 + 4x + 2 = 0$ stated explicitly • $4^2 - 4 \times 2 \times 2$ • $b^2 - 4ac = 0$ so line is a tangent
	• ⁵	pd	coordinates of P	• ⁵ $x = -1, y = 4$

Notes

For method 1 :

- 1. \bullet^2 is only available if "= 0" appears at either \bullet^2 or \bullet^3 stage.
- 2. Alternative wording for •⁴ could be e.g. 'repeated roots', 'repeated factor', ' only one solution', 'only one point of contact' **along with** 'line is a tangent'.

For both methods :

- 3. Candidates must work with a quadratic equation at the \bullet^3 and \bullet^4 stages.
- 4. Simply stating the tangency condition without supporting working cannot gain \bullet^4 .
- 5. For candidates who obtain two distinct roots, \bullet^4 is still available for 'not equal roots so not a tangent' or $b^2 4ac \neq 0$ so line is not a tangent', but \bullet^5 is not available.

5

- strategy for finding centre SS
- state centre of smaller circle ic
- •9 strategy for finding radius ss
- 10 pd find radius of smaller circle
- •¹¹ ic state equation

- •⁷ e.g. "Stepping out"
- •⁸ (1, 6)
- $9 \sqrt{2^2 + 2^2}$
- •¹⁰ $\sqrt{8}$ see note 10 •¹¹ $(x-1)^2 + (y-6)^2 = 8$ or $x^2 + y^2 2x 12y + 29 = 0$

Notes

For method 1:

- 6. Acceptable alternatives for \bullet^7 are $6\sqrt{2}$ or decimal equivalent which rounds to $8 \cdot 5$ i.e. to two significant figures.
- Acceptable alternatives for \bullet^8 are $\frac{\sqrt{72}}{3}$ or $2\sqrt{2}$ or decimal equivalent which rounds to $2 \cdot 8$. 7.
- (1, 6) without working gains \bullet^{10} but loses \bullet^{9} . 8.

For method 2:

- 9. (1, 6) without working gains \bullet^8 but loses \bullet^7 .
- 10. Acceptable alternatives for \bullet^{10} are $2\sqrt{2}$ or decimal equivalent which rounds to $2 \cdot 8$.

In both methods:

- 11. If m = 1 is used in a 'stepping out' method the centre of the larger circle need not be stated explicitly for \bullet^6 .
- 12. For the smaller circle, candidates who 'guess' values for either the centre or radius cannot be awarded \bullet^{11} .
- 13. At \bullet^{11} e.g. $\sqrt{8}^2$, $2 \cdot 8^2$ are unacceptable, but any decimal which rounds to $7 \cdot 8$ is acceptable.
- 14. •¹¹ is not available to candidates who divide the coordinates of the centre of the larger circle by 3.

4 Solve $2\cos 2x - 5\cos x - 4 = 0$ for $0 \le x < 2\pi$.

Generic Scheme	Illustrative Scheme	
4		
	Method 1 : Using factorisation	
• ¹ ss know to use double angle formula	• ¹ $2 \times (2 \cos^2 x - 1) \dots$	
• ² ic express as quadratic in $\cos x$	• ² $4\cos^2 x - 5\cos x - 6$ = 0 must appear at either of	
• ³ ss start to solve	• ³ $(4\cos x + 3)(\cos x - 2) \int$ these lines to gain • ² .	
	Method 2 : Using quadratic formula	
	• ¹ $2 \times (2\cos^2 x - 1) \dots$	
	• ² $4\cos^2 x - 5\cos x - 6 = 0$	
	• ³ $\cos x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \times 4 \times (-6)}}{2 \times 4}$	
	In both methods :	
• ⁴ pd reduce to equations in $\cos x$ only	• ⁴ $\cos x = -\frac{3}{4}$ and $\cos x = 2$	
• ⁵ pd complete solutions to include only	• ⁵ 2.419 , 3.864 and no solution	
one where $\cos x = k$ with $ k > 1$	or	
	• ⁴ $\cos x = 2$ and no solution	
	• ⁵ $\cos x = -\frac{3}{4}$ and 2.419, 3.864	
Notes		
1. \bullet^1 is not available for simply stating that $\cos 2A$	$A = 2\cos^2 A - 1$ with no further working.	
2. Substituting $\cos 2A = 2\cos^2 A - 1$ or $\cos 2a = 2\cos^2 A$	a^2a-1 etc. should be treated as bad form throughout.	
3. In the event of $\cos^2 x - \sin^2 x$ or $1 - 2\sin^2 x$ being substituted for $\cos^2 x - e^1$ cannot be given until the		
equation reduces to a quadratic in $\cos x$.		
4. Candidates may express the quadratic equation obtained at the \bullet^2 stage in the form $4c^2 - 5c + 6 = 0$,		
$4x^2 - 5x + 6 = 0$ etc. For candidates who do not solve a trig. equation at \bullet^5 , $\cos x$ must appear explicitly to		
gain ● ⁴ .		
4		

- 5. \bullet^4 and \bullet^5 are only available as a consequence of solving a quadratic equation subsequent to a substitution.
- 6. Any attempt to solve $a\cos^2 x + b\cos x = c$ loses \bullet^3 , \bullet^4 and \bullet^5 .
- 7. Accept answers given as decimals which round to $2 \cdot 4$ and $3 \cdot 9$.
- 8. There must be an indication after $\cos x = 2$ that there are no solutions to this equation.

Acceptable evidence : e.g. " $\cos x = 2$ ", "NA", "out of range", "invalid" and " $\cos x = 2$ no", " $\cos x = 2 \times "$

Unacceptable evidence : e.g. " $\underline{\cos x = 2}$ ", " $\cos x = 2$???", "Maths Error".

9. •⁵ is not available to candidates who work throughout in degrees and do not convert their answer into radian measure.

10. Do not accept e.g. 221.4, 138.6, $\frac{221 \cdot 4\pi}{180}$, $\frac{221\pi}{180}$, 1.23π .

11. Ignore correct solution outside the interval $0 \le x < 2\pi$.

- know to and find OT SS
- obtain an expression for PQ ic
- complete area evaluation ic
- •¹ 4 or (0,4) •² 10- x^2 -4 •³ 2 $x \times (6-x^2) = 12x 2x^3$ stated, or implied by \bullet^2

Notes

- 1. The evidence for \bullet^1 and \bullet^2 may appear on a sketch.
- No marks are available to candidates who work backwards from the area formula. 2.
- •³ is only available if •² has been awarded. 3.

5 (b) •⁴ $A'(x) = 12 \dots$ stated, or implied by •⁵ ss know to and start to differentiate •4 • $5 12 - 6x^2$ pd complete differentiation • $12 - 6x^2 = 0$ set derivative to zero ic •⁷ $\sqrt{2}$ or decimal equivalent (ignore inclusion of $-\sqrt{2}$) pd obtain x justify nature of stationary point ss (Note : accept $12-6x^2$ in lieu of A'(x) in the nature table.) •⁹ Max and $8\sqrt{2}$ or decimal equivalent •9 ic interpret result and evaluate area N.B. To conclude a maximum the evidence must come from \bullet^8 .

Notes

- 4. At \bullet^7 accept any answer which rounds to 1.4.
- 5. Throughout this question treat the use of f'(x) or $\frac{dy}{dx}$ as bad form.
- 6. At \bullet^{8} the nature can be determined using the second derivative.
- 7. At \bullet^9 accept any answer which rounds to $11 \cdot 3$ or $11 \cdot 4$.

6 (a) A curve has equation $y = (2x-9)^{\frac{1}{2}}$. Show that the equation of the tangent to this curve at the point where x = 9 is $y = \frac{1}{3}x$. 5 (*b*) Diagram 1 shows part of the curve and the tangent. The curve cuts the *x*-axis at the point A. Find the coordinates of point A. 1 Diagram 1 **Generic Scheme Illustrative Scheme** 6 (a) •¹ $\frac{1}{2}(2x-9)^{-\frac{1}{2}}$ •² ...×2 •³ $\frac{1}{3}$ •⁴ 3 know to and start to differentiate ss pd complete chain rule derivative pd gradient via differentiation pd obtain y_{CURVE} at x = 9 $y-3=\frac{1}{3}(x-9)$ and complete to $y=\frac{1}{3}x$ state equation and complete ic Notes •³ is only available as a consequence of differentiating equation of the curve. 1. 2. Candidates must arrive at the equation of the tangent via the point (9, 3) and not the origin. 3. For \bullet^3 accept $9^{-\frac{1}{2}}$. **Regularly occurring responses Response 1 Response 2** Candidates who equate derivatives: Candidates who intersect curve and line: $(2x-9)^{\frac{1}{2}} = \frac{1}{3}x \checkmark \bullet^{1}$ $\frac{1}{2} (2x - 9)^{-\frac{1}{2}} \times 2 = \frac{1}{3} \checkmark \bullet^3$ $2x - 9 = \left(\frac{1}{3}x\right)^2 \checkmark \bullet^2 \qquad \boxed{5 \text{ marks out of 5}}$ leading to x = 9 and y = 3 from curve $\sqrt{4}$ $\frac{1}{9}x^2 - 2x + 9 = 0 \checkmark \bullet^3$ Also obtaining y = 3 from line and so line is a tangent Factorising or using discriminant $\sqrt{\bullet^4}$ 5 marks out of 5 Equal roots or $b^2 - 4ac = 0$ so line is a tangent $\sqrt{\bullet^5}$ (b) $\bullet^6 \left(\frac{9}{2}, 0\right)$ obtain coordinates of A ic Notes 4. Accept $x = \frac{9}{2}$, y = 0 where y = 0 may appear from $(2x-9)^{\frac{1}{2}} = 0$. 5. For $\left(\frac{9}{2}, 0\right)$ without working \bullet^6 is awarded, but from erroneous working \bullet^6 is lost (see response below). **Regularly occurring responses Response 1** Here \bullet^6 cannot be awarded due to $\sqrt{2x-9} = 0 \implies \sqrt{2x}-3=0 \implies 2x-9=0 \implies x=4.5$ the erroneous working. Page 24

7 (a) Given that $\log_4 x = P$, show that $\log_{16} x = \frac{1}{2}P$.

Generic Scheme

- know to and convert back to log form $\int e^2 \log_{16} x = \log_{16} 4^P$ \mathbf{ss}
- process and complete pd

• $x = 4^{\mathrm{P}}$

•³ $\log_{16} x = P \times \log_{16} 4$ and complete

Notes

(a)

1. No marks are available to candidates who simply substitute in values and verify the result.

e.g.
$$\log_4 4 = 1$$
 and $\log_{16} 4 = \frac{1}{2}$
 $\log_4 x = P$ and $\log_{16} x = \frac{1}{2}P$

Regularly occurring responses

7 (b) Solve $\log_3 x + \log_9 x = 12$.	3	
Generic Scheme	Illustrative Scheme	
 (b) •⁴ ss use appropriate strategy •⁵ pd start solving process •⁶ pd complete process via log to expo form 	• ⁴ $\log_3 x + \frac{1}{2} \log_3 x = 12$ • ⁴ $2\log_9 x + \log_9 x = 12$ • ⁵ $\log_3 x = 8$ • ⁵ $\log_9 x = 4$ • ⁶ $x = 3^8$ (=6561) • ⁶ $x = 9^4$ (=6561) or or or • ⁴ $Q + \frac{1}{2}Q = 12$ • ⁴ $2Q + Q = 12$ $Q = 8$ $Q = 4$ • ⁵ $\log_9 x = 4$ • ⁵ $\log_3 x = 8$ • ⁵ $\log_9 x = 4$ • ⁶ $x = 3^8$ (=6561) • ⁶ $x = 9^4$ (=6561)	
 Notes 2. At •⁴ any letter except <i>x</i> may be used in lieu of Q. 3. Candidates who use a trial and improvement technique by substituting values for <i>x</i> gain no marks. 4. The answer with no working gains no marks. 		
Response 1 $Q+2Q=12$ $\checkmark \bullet^4$ or $\land \bullet^4$ $3Q=12$ $3\log_3 x = 12$ $\log_3 x = 12$ $\log_3 x = 12$ $\log_3 x = 12$ $\log_3 x = 12$	Response 3 $2 \times \bullet^4$ $2 \log_9 x + \log_9 x = 12 \checkmark \bullet^4$ $\log_9 x^2 + \log_9 x = 12$ $x \bullet^5$	
$\begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$	$\int e^{6} \qquad \log_{9} x^{3} = 12 \sqrt{e^{3}}$ $x^{3} = 9^{12} \qquad x = \sqrt[3]{9^{12}}$ $x = 9^{4} \sqrt{e^{6}}$	
2 marks out of 3 The marks allocated are dep on what substitution is used	$x = 3^{8}$ $= 6561$ $3 \text{ marks out of } 3$	
Response 4 $\log_3 x = 8 \checkmark \bullet^4 \checkmark \bullet^5$ $x = 3^8 \checkmark \bullet^6$ = 6561 Without justification, \bullet^4 and \bullet^5 are not available.		