	<u>Question</u>	<u>Answer</u>
	1	Α
	2	С
	3	D
	4	Α
	5	В
	6	D
	7	С
	8	В
	9	С
	10	В
	11	D
	12	Α
	13	В
	14	С
	15	С
	16	Α
	17	В
	18	В
	19	С
	20	Α
<u>Summary</u>	Α	5
-	В	6
	С	6
	D	3

Paper 1 Section B

22	(a) (i) Show that $(x-1)$ is a factor of $f(x) = 2x^3 + x^2 - 8x + 5$.				
	(ii) Hence factorise $f(x)$ fully.	5			
	(b) Solve $2x^3 + x^2 - 8x + 5 = 0$.	1			
	Generic Scheme	Illustrative Scheme			
22	2 (a)	Method 1 : Using synthetic division			
	• ¹ ss know to use $x = 1$	\bullet^1 1 2 1 -8 5			
	• ² ic complete evaluation	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	 ³ ic state conclusion ⁴ pd find quadratic factor ⁵ pd factorise completely 	\bullet^3 $(x-1)$ is a factorsee note 2 \bullet^4 $2x^2 + 3x - 5$ stated, or implied by \bullet^5 \bullet^5 $(x-1)(x-1)(2x+5)$ stated explicitly			
		Method 2 : Using substitution and inspection • ¹ know to use $x = 1$ • ² 2+1-8+5=0 • ³ (x-1) is a factor see note 2			
		• ⁴ $(x-1)(2x^2+3x-5)$ • ⁵ $(x-1)(x-1)(2x+5)$ stated explicitly			
No	otes				
 Communication at •³ must be consistent with working at •². i.e. candidate's working must arrive legitimately at zero before •³ is awarded. If the remainder is not 0 then an appropriate statement would be '(x-1) is not a factor'. For •³, minimum acceptable statement is 'factor'. Unacceptable statements : x = 1 is a factor, (x+1) is a factor, x = 1 is a root, (x-1) is a root etc. At •⁵ the expression may be written as (x-1)²(2x+5). 					
22	(b) • ⁶ ic state solutions	• ⁶ $x = 1$ and $x = -\frac{5}{2}$ or $-2 \cdot 5$ or $-2\frac{1}{2}$ These may appear in the working at (a).			
Notes					
4.	4. From (a) $(x-1)(x-1)(2x+5)$ leading to $x = 1$, $x = -\frac{5}{2}$ then $(1, 0)$ and $\left(-\frac{5}{2}, 0\right)$ gains \bullet^6 .				
	However, $(x-1)(x-1)(2x+5)$ leading to $(1, 0)$ and $\left(-\frac{5}{2}, 0\right)$ only does not gain \bullet^6 .				
5.	5. From (a) $(x-1)(2x+5)$ only leading to $x=1$, $x=-\frac{5}{2}$ does not gain \bullet^6 as equation solved is not a cubic but				

5. From (a) (x-1)(2x+5) only leading to x = 1, $x = -\frac{5}{2}$ does not gain \bullet^6 as equation solved is not a cubic, by (x-1)(x+1)(2x-5) leading to x = 1, x = -1 and $x = \frac{5}{2}$ gains \bullet^6 as follow through from a cubic equation.

22 (<i>c</i>) The line with equation $y = 2x - 3$ is a tangent to the curve with equation					
$y = 2x^3 + x^2 - 6x + 2$ at the point G.					
Find the coordinates of G.	5				
(<i>d</i>) This tangent meets the curve again at the Write down the coordinates of H	point H.				
Generic Scheme	Illustrative Scheme				
	inustrative Scheme				
Method 1 : Equating curve and line	Method 1 : Equating curve and line				
• ⁷ ss set $y_{\text{CURVE}} = y_{\text{LINE}}$ • ⁸ ic express in standard form • ⁹ ss compare with (a) or factorise • ¹⁰ ic identify x_{G} • ¹¹ pd evaluate y_{G}	$ \begin{array}{ccc} \bullet^{7} & 2x^{3} + x^{2} - 6x + 2 = 2x - 3 & stated explicitly \\ \bullet^{8} & 2x^{3} + x^{2} - 8x + 5 \\ \bullet^{9} & (x - 1)(x - 1)(2x + 5) \end{array} = 0 & see \ note \ 6 \\ \bullet^{10} & x = 1 \\ \bullet^{11} & y = -1 \end{array} $				
Method 2 : Differentiation	Method 2 : Differentiation				
\bullet^7 ssknow to and differentiate curve \bullet^8 icset derivative to gradient of line \bullet^9 pdsolve quadratic equation \bullet^{10} ssprocess to identify x_G \bullet^{11} iccomplete to $y_{CURVE} = y_{LINE}$	• ⁷ $6x^2 + 2x - 6$ • ⁸ $6x^2 + 2x - 6 = 2$ • ⁹ $x = -\frac{4}{3}$ and 1 • ¹⁰ at $x = 1$ evaluate y_{CURVE} and y_{LINE} • ¹¹ $y = -1$ from both curve and line				
Notes					
In method 1:					
6. • ⁸ is only available if '= 0' appears at either the • ⁸ or • ⁹ stage.					
7. \bullet^9 , \bullet^{10} and \bullet^{11} are only available via the working	7. \bullet^9 , \bullet^{10} and \bullet^{11} are only available via the working from \bullet^7 and \bullet^8 .				
8. If $(x-1)(x-1)(2x+5)$ does not appear at \bullet^9 stag	e, it can be implied by \bullet^5 and \bullet^{10} .				
9. At \bullet^9 a quadratic used from (a) may gain \bullet^9 , \bullet^1	¹ and \bullet^{12} but a quadratic from \bullet^{8} may gain \bullet^{11} and \bullet^{12} only.				
10. If G and H are interchanged then \bullet^{10} is lost but	\bullet^{11} and \bullet^{12} are still available.				
 Candidates who obtain three distinct factors at and •¹². 	• ⁹ can gain • ¹¹ for evaluating all <i>y</i> values, but lose • ¹⁰				
12. A repeated factor at \bullet^5 or \bullet^9 stage is required for \bullet^{10} to be awarded without justification.					
In both methods:					
 13. All marks in (c) are available as a result of differentiating 2x³ + x² - 6x + 2 and solving this equal to 2 (from method 2). Only marks •⁷ and •⁸ (from method 1) are available to those candidates who choose to differentiate 2x³ + x² - 8x + 5 and solve this equal to 0. 14. Candidates may choose a combination of making equations equal and differentiation. 					
• ¹² pd state solution	• ¹² $\left(-\frac{5}{2},-8\right)$ may appear in (c)				
Notes					
15 Mathad 2 from (a) would not wield a value for U	[and so \bullet^{12} is not available				

• ⁵ ss determine $tan b$	• ⁵ $\tan b = \frac{3}{4}$	stated, or implied by $ullet^6$				
• ⁶ ss know to complete triangle	• ⁶ right angled triangle with 3 and 4 correctly shown					
• ⁷ pd determine hypotenuse	•7 5	stated, or implied by $ullet^8$				
• ⁸ ic state values of sine and cosine ratios	• ⁸ $\sin b = \frac{3}{5}$ and $\cos b = \frac{4}{5}$	may not appear until (c)				
Notes						
3. • ⁸ is only available if $-1 \le \sin b \le 1$ and $-1 \le \cos b \le 1$. 4. $\sin b = \frac{3}{5}$ and $\cos b = \frac{4}{5}$ without working is awarded 3 marks only.						
5. Only numerical answers are acceptable for \bullet^7 and \bullet^8 .						

4

- **23** (*c*) (i) Find the value of sin(a-b).
 - (ii) State the value of sin(b-a).

Generic Scheme Illustrative Scheme 23 (c) •9 know to use addition formula $\sin a \cos b - \cos a \sin b$ SS •¹⁰ $\frac{3}{\sqrt{13}} \times \frac{4}{5} - \frac{2}{\sqrt{13}} \times \frac{3}{5}$ •¹¹ $\frac{6}{5\sqrt{13}}$ •¹² $-\frac{6}{5\sqrt{13}}$ •¹⁰ ic substitute into expansion •¹¹ evaluate sine of compound angle pd •¹² ss use $\sin(-x) = -\sin x$ Notes 6. $\sin(A-B) = \sin A \cos B - \cos A \sin B$, or just $\sin A \cos B - \cos A \sin B$, with no further working does not gain \bullet^9 . 7. Candidates should not be penalised further at \bullet^{10} , \bullet^{11} and \bullet^{12} for values of sine and cosine outside the range -1 to 1. 8. Candidates who use $\sin(a-b) = \sin a - \sin b$ lose \bullet^9 , \bullet^{10} and \bullet^{11} but can gain \bullet^{12} , as follow through, only for a non-zero answer which is obtained from the result sin(-x) = -sin x. 9. Treat $\sin \frac{3}{\sqrt{13}} \cos \frac{4}{5} - \cos \frac{2}{\sqrt{3}} \sin \frac{3}{5}$ as bad form only if 'sin' and 'cos' subsequently disappear. 10. It is acceptable to work through the whole expansion again for \bullet^{12} . **Regularly occurring responses Response** 1 **Response 2** $\sin a = 3$ $\cos a = 2$ $\sin(a-b) = \sin a - \sin b \quad \times \bullet^9$ Marks lost in (a) or (b) =6-6 $\times \bullet^{10}$ $\sin b = 3 \quad \cos b = 4$ $\sin(a-b) = \sin a \cos b - \cos a \sin b \quad \checkmark \bullet^9$ $= 0 \times \bullet^{11}$ $=3 \times 4 - 2 \times 3$ $\checkmark \bullet^{10}$ = 6 × •¹¹ $\sin(b-a) = 0 \times \bullet^{12}$ Eased - not dealing with fraction containing a surd. 0 marks out of 4 $\sin(b-a) = -6$ \checkmark \bullet^{12} 3 marks out of 4 **Response 3 Response** 4 From (a) and (b) $\sin a = \frac{2}{3}$ $\cos a = \frac{1}{3}$ (i) $\sin(a-b) = \sin a \sin b - \cos a \cos b \times \bullet^9$ $\sin b = \frac{2}{3} \qquad \cos b = \frac{3}{5}$ $=\frac{3}{\sqrt{13}}\times\frac{3}{5}-\frac{2}{\sqrt{13}}\times\frac{4}{5}$ \checkmark \bullet^{10} $=\frac{1}{5\sqrt{13}}$ $\sqrt{13}$ (c) (i) $\sin(a-b) = \sin a \cos b - \cos a \sin b \checkmark \bullet^9$ (ii) $\sin(b-a) = -\frac{1}{5\sqrt{13}} \quad \chi \bullet^{12}$ $=\frac{2}{3}\times\frac{3}{5}-\frac{1}{3}\times\frac{2}{5}$ \checkmark •¹⁰ $=\frac{4}{15}$ × \bullet^{11} (ii) $\sin(b-a) = \sin b \cos a - \cos b \sin a$ 3 marks out of 4 $=\frac{2}{5}\times\frac{1}{3}-\frac{3}{5}\times\frac{2}{3}$ $=-\frac{4}{15}$ × •¹² Here the working was not necessary; the answer would gain \bullet^{12} , provided it is non zero. 3 marks out of 4