2009 Paper 2 Solutions

Qu. 1

The primary method m.s is based on the following generic m.s.

This generic marking scheme may be used as an equivalence guide but only where a candidate does not use the primary method or any alternative method shown in detail in the marking scheme.

- ss know to differentiate
- pd differentiate
- •3 ss set derivative to zero
- •4 pd factorise
- •5 pd solve for x
- •6 pd evaluate y-coordinates
- •7 ss know to, and justify turning points
- •8 ic interpret result

Primary Method: Give 1 mark for each.

- $\frac{dy}{dx} = ...(1 \text{ term correct})$
- 2 $3x^{2}-6x-9$
- $\frac{dy}{dx} = 0$
- •4 3(x+1)(x-3)

	. 5	. 6
•5	x = -1	x = 3
_6	v = 17	v = -15

			•7			.8	
	x		-1			3	
•7							
	$\frac{dy}{dx}$	+	0	_	-	0	+
.8			max			min	

Qu. 2

The primary method m.s is based on the following generic m.s.

This generic marking scheme may be used as an equivalence guide but only where a candidate does not use the primary method or any alternative method shown in detail in the marking scheme.

- substitute for g(x) in f(x)
- •2 ic complete
- •3 ic sub. and complete for q(x)
- •4 ss simplify
- pd differentiate
- •6 pd solve

Primary Method: Give 1 mark for each.

s/lby·2

- •1 $f(x^2-2)$
- 2 3($x^{2}-2$)+1
- $(3x+1)^2-2$

•6 $x = -\frac{1}{2}$

Qu. 3

The primary method m.s is based on the following generic m.s.

This generic marking scheme may be used as an equivalence guide but only where a candidate does not use the primary method or any alternative method shown in detail in the marking scheme.

- •1 ss know and use $f(a) = 0 \Leftrightarrow a$ is a root
- •² ic start to find quadratic factor
- ic complete quadratic factor
- pd factorise fully
- •5 ss use log laws
- •6 ss know to & convert to exponential form
- ic write cubic in standard form
- •8 pd solve cubic
- ic interpret valid solution

Primary Method: Give 1 mark for each.

- f(1) = 1 + 8 + 11 20 = 0 so x = 1 is a root See Note 1
- $(x-1)(x^2.....)$
- $(x^2 + 9x + 20)$
- •4 (x-1)(x+4)(x+5) Stated explicitly
- $\log_2((x+3)(x^2+5x-4))$ s/lby 6
- •6 $(x+3)(x^2+5x-4)=2^3$
- $x^3 + 8x^2 + 11x 20 = 0$
- •8 x = 1 or x = -4 or x = -5 Stated explicitly here
- •9 x = 1 only

Qu. 4

The primary method m.s is based on the following generic m.s.

This generic marking scheme may be used as an equivalence g but only where a candidate does not use the primary method or alternative method shown in detail in the marking scheme.

- •1 pd substitute
- •2 ic find centre
- ss use mid-point result for Q
- ss know to, and find gradient of radi
- •5 ic find gradient of tangent
- •6 ic state equation of tangent
- ic state radius
- •8 ss know how to find centre
- •9 ic state equation of one circle
- •10 ic state equation of the other circle

Primary Method: Give 1 mark for each.

- $^{-1}$ $(5+1)^2 + (10-2)^2 = 100$
- 2 centre = (-1, 2)
- Q = (-7, -6) (no evidence requ.)
- $m_{rad} = \frac{8}{6}$
- •5 $m_{tgt} = -\frac{3}{4}$ s/iby •
- •6 $y (-6) = -\frac{3}{4}(x (-7))$
- 7 radius = 20 s/iby 9 or 10
- •8 centre = (5,10) s/iby.9
- $(x-5)^2 + (y-10)^2 = 400$
- $(x+19)^2 + (y+22)^2 = 400$

Qu. 5

The primary method m.s is based on the following generic m.s.

This generic marking scheme may be used as an equivalence guide but only where a candidate does not use the primary method or any alternative method shown in detail in the marking scheme.

- ic interprets graph
- •2 ss knows how to find intersection
- pd starts to solve
- pd finds x-coordinate in the 1st quadrant
- •5 pd finds x-coordinate in the 2nd quadrant
- pd finds y-coordinates
- ss knows how to find area
- •8 ic states limits
- •9 pd integrate
- •10 pd integrate
- •11 ic substitute limits
- •12 pd evaluate area

Primary Method: Give 1 mark for each ·

- \bullet^1 m=3 and n=2
- 2 3cos 2x = -4cos 2x + 3
- e^3 $\cos 2x = \frac{3}{7}$
- x = 0.6
- •5 x = 2.6
- •6 y = 1.3, 1.3
- $-7 \quad \int (-4\cos 2x + 3 3\cos 2x) \ dx$
- $\int_{0.6}^{2.6}$
- •9 "- $7\sin 2x$ "
- •10 $3x \frac{7}{2}\sin 2x$
- •11 $(3 \times 2.6 \frac{7}{2} \sin 5.2) (3 \times 0.6 \frac{7}{2} \sin 1.2)$
- •¹² 12.4

Qu. 6

The primary method m.s is based on the following generic m.s.

This generic marking scheme may be used as an equivalence guide but only where a candidate does not use the primary method or any alternative method shown in detail in the marking scheme.

- ic substitute into equation
- pd evaluate exponential expression
- ic interpret info and substitute
- ss convert expo. equ. to log. equ.
- pd process

Primary Method: Give 1 mark for each •

- •1 61e^{0.016×14}
- 76 million or equiv.
- \bullet 10.2 = 5.1 $e^{0.0043t}$
- 4 0.0043 $t = \ln 2$
- t = 161.2 years

Qu. 7

The primary method m.s is based on the following generic m.s.

This generic marking scheme may be used as an equivalence guide but only where a candidate does not use the primary method or any alternative method shown in detail in the marking scheme.

- ss use distributive law
- •2 ic interpret scalar product
- •3 pd processing scalar product
- ic interpret perpendicularity
- ic interpret scalar product
- of pd complete processing
- •7 ic interpret vectors on a 2-D diagram
- 9 pd evaluate magnitude of vector sum
- ic interpret vectors on a 2-D diagram
- •10 pd evaluate magnitude of vector difference

Primary Method: Give 1 mark for each ·

 \bullet^1 p.q + p.r

- s/i by $(\cdot^2$ and $\cdot^4)$
- •2 4×3cos 30°
- s/ibv·3
- •3 $6\sqrt{3}$ (10.4)
- p.r = 0

- explicitly stated
- •⁵ -|**r**|×3cos120°
- •6 $r = \frac{3}{2}$ and ... $\frac{9}{4}$
- $q + r \equiv$ from D to the projection of A onto DC
- $|q+r|=\frac{3\sqrt{3}}{2}$
- •9 $p-q \equiv \overrightarrow{AC}$
- •10 $| p q | = \sqrt{\left(4 \frac{3\sqrt{3}}{2}\right)^2 + \left(\frac{3}{2}\right)^2}$ (2.05)