2008 Higher Mathematics Paper 1 Section A

1.21

QU	part	mk	code	calc	source	SS	pd	ic	С	в	А	U1	U2	U 3
1.21	a	6	C8,C9	NC		1	3	2	6			6		
	b	5	A21,A22			1	3	1	5				5	
	С	4	C10					4	2	2		4		

 $\mathbf{6}$

5

4

A function f is defined on the set of real numbers by $f(x) = x^3 - 3x + 2$.

- (a) Find the coordinates of the stationary points on the curve y = f(x)and determine their nature.
- (b) (i) Show that (x-1) is a factor of $x^3 3x + 2$.
- (ii) Hence or otherwise factorise x³ 3x + 2 fully.
 (c) State the coordinates of the points where the curve with equation y = f(x) meets both the axes and hence sketch the curve.

The primary method is based on this generic marking scheme which may be used as a guide for any method not shown in detail

Gei	Generic Marking Scheme			ry Method : Give 1 mark for each ∙
\bullet^1 \bullet^2	ss pd	set derivative to zero differentiate	• ¹ • ²	$f'(x) = 0$ $3x^2 - 3$
• ³ • ⁴	pd pd	solve evaluate <i>y</i> -coordinates	• ³	$x \begin{vmatrix} \bullet^3 \\ -1 \end{vmatrix} \begin{vmatrix} \bullet^r \\ 1 \end{vmatrix}$
• ⁵	ic ic	justification state conclusions		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
•7 •8	ss pd	know to use $x = 1$ complete eval. & conclusion	● ⁵ ● ⁶	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
• ⁹	ic pd	start to find quadratic factor	• ⁷ • ⁸	know to use $x = 1$ $1 - 3 + 2 = 0 \Rightarrow x - 1$ is a factor
• ¹¹ • ¹²	pd ic	factorise completely interpret <i>y</i> -intercept	• ⁹ • ¹⁰ 11	$(x-1)(x^2)$ $(x-1)(x^2+x-2)$
• ¹³ • ¹⁴	ic ic	interpret x-intercepts sketch : showing turning points	• ¹¹ • ¹²	(x-1)(x-1)(x+2) stated explicitly (0,2) (-2.0) (1.0)
• ¹⁵	ic	sketch : showing intercepts	• ¹⁴ • ¹⁵	(-2,0), $(1,0)Sketch with turning pts markedSketch with (0,2) or (-2,0)$

Notes

- 1 The "=0" shown at \bullet^1 must appear at least once before the \bullet^3 stage.
- 2 An unsimplified $\sqrt{1}$ should be penalised at the first occurrence.
- 3 •³ is only available as a consequence of solving f'(x) = 0.
- 4 The nature table must reflect previous working from \bullet^3 .
- 5 Candidates who introduce an extra solution at the \bullet^3 stage cannot earn \bullet^3 .
- 6 The use of the 2nd derivative is an acceptable strategy for \bullet^5 .
- 7 As shown in the Primary Method,
 (•³ and •⁴) and (•⁵ and •⁶) can be marked in series or in parallel.
- 8 The working for (b) may appear in (a) or vice versa. Full marks are available wherever the working occurs.

Notes

9 In Primary method \bullet^8 and alternative \bullet^9 , candidates must show some acknowledgement of the resulting "0". Although a statement wrt the zero is preferable, accept something as simple as "underlining the zero". Alternative Method: \bullet^7 to \bullet^{10} 1 1 0 -3 2 \bullet^7 1 1 0 -3 2 \bullet^8 1 1 0 -3 2 \bullet^8 1 1 1 -2 0

• f(1) = 0 so (x - 1) is a factor • $x^2 + x - 2$

Notes

10 Evidence for •¹² and •¹³ may not appear until the sketch.
11•¹⁴ and •¹⁵ are only available for the graph of a cubic.

Nota Bene

For candidates who omit the x^2 coeff. leading to •⁷ X •⁸ $\sqrt{\frac{1 | 1 -3 2}{| 1 -2 0}}$ •⁹ $\sqrt{f(1) = 0 \text{ so } (x-1).....}$ •¹⁰ X $x^2 - 2x$ •¹¹ $\sqrt{x(x-1)(x-2)}$ **but** •¹⁰ X x-2•¹¹ X (x-1)(x-2)

The primary method is based on this generic marking scheme which may be used as a guide for any method not shown in detail

Generic Marking Scheme	Primary Met	od : Give 1 mark for each ·					
 •¹ ss know to differentiate •² pd differentiate •³ ss set derivative to -1 •⁴ pd factorise and solve •⁵ pd solve for y •⁶ ss use gradient •⁷ ic interpret result 	$\bullet^{1} \frac{dy}{dx} = \dots$ $\bullet^{2} 3x^{2} - 1$ $\bullet^{3} 3x^{2} - 1$ $\bullet^{4} x$ $\bullet^{5} y$ $\bullet^{6} y = 4 - $ $\bullet^{7} check \ (check \ (c$	$(1 \ term \ correct) \ s / i \ by \bullet^{2}$ $12x + 8 \ s / i \ by \bullet^{3}$ $12x + 8 = -1$ $\begin{vmatrix} \bullet^{4} & \bullet^{5} \\ 1 & 3 \\ 3 & -3 \end{vmatrix}$ $-x \ has \ gradient = -1$ $(3, -3) \ and \ reject$					
es in (a)	Common Error	Alternative for \bullet^6 and \bullet^7					
• ¹ $\sqrt{\frac{dy}{dx}} =(1 \ term \ correct)$ • ² $\sqrt{3x^2 - 12x + 8}$ For candidates who now guess $x =$ and check that $\frac{dy}{dx} = .1$ only	$= 1$ $ \begin{vmatrix} \bullet^{1} & \sqrt{\frac{dy}{dx}} =(1 \ term \ correct) \\ \bullet^{2} & \sqrt{3x^{2} - 12x + 8} \\ \bullet^{3} & X \ 3x^{2} - 12x + 8 = 0 \\ \bullet^{4} & X \ irrespective of what is written \end{vmatrix}$	$\int_{\bullet}^{6} \begin{cases} x^3 - 6x^2 + 8x = 4 - x \\ x^3 - 6x^2 + 9x - 4 = 0 \\ (x - 1)(x^2 - 5x + 4) \\ (x - 4)(x - 1) \end{cases}$					

one further mark (\bullet^3) can be awarded. Guessing and checking further answers gains no more credit.

An "=0" must appear at least once in the two lines shown in the alternative for \bullet^6 and \bullet^7 .

2

repeated root implies tangent at (1,3).

 \bullet^7

1 22	qu	part	mk	A3	calc	source	SS	pd	ic	C	В	A	U1	U2	U3
1.20	1.23	a	3	A4	NC				3	3			3		
		b	5	A31			2	2	1		1	4			5

Functions f, g and h are defined on suitable domains by $f(x) = x^2 - x + 10$, g(x) = 5 - x and $h(x) = \log_2 x$.

- (a) Find expressions for h(f(x)) and h(g(x)).
- (b) Hence solve h(f(x)) h(g(x)) = 3

The primary method is based on this generic marking scheme which may be used as a guide for any method not shown in detail.

Generic Marking Scheme Primary Method : Give 1 mark for each • $h(f(x)) = h(x^2 - x + 10) s / i by \bullet^2$ •1 \mathbf{ic} interpretation composition •2 $\log_2(x^2 - x + 10)$ •² interpretation composition ic •3 $\log_2(5-x)$ \mathbf{ic} interpretation composition •3 $\log_2\left(\frac{x^2 - x + 10}{5 - x}\right)$ use log laws \mathbf{SS} •5 convert to exponential form \mathbf{SS} •6 $\frac{x^2 - x + 10}{5 - x} = 2^3$ pd process conversion express in standard form pd $x^2 - x + 10 = 8(5 - x)$ find valid solutions ic $x^2 + 7x - 30 = 0$ $x=3,\ -10$

Notes

- 1 In (a) 2 marks are available for finding one of h(f(x)) or h(g(x)) and the third mark is for the other.
- 2 Treat $\log_2 x^2 x + 10$ and $\log_2 5 x$ as bad form.
- 3 The omission of the base should not be penalised in \bullet^2 to \bullet^4 .
- 4 \bullet^7 is only available for a quadratic equation and \bullet^8 must be the follow-through solutions.

Common Error 1

•⁴ X
$$\log_2(x^2 + 5) = 3$$

•⁵ $\sqrt{x^2 + 5} = 2^3$
•⁶ X $x^2 = 3$
•⁷ X $x = \pm \sqrt{3}$
•⁸ X not available

Common Error 2

•⁴
$$\sqrt{\log_2\left(\frac{x^2-x+10}{5-x}\right)}$$

 $\log_2\left(\frac{x^2-x+10}{5-x}\right)$
 $\log_2\left(x^2-x+10\right)$
 $\log_2\left(x^2-x+10\right)$
 $\log_2\left(x^2+2\right)=3$
•⁵ $X\sqrt{x^2+2}=2^3$
•⁶ X $x=\pm\sqrt{6}$
•⁷ X not available
•⁸ X not available

Common Error 3

- •⁴ X not available •⁵ $\sqrt{\log_2(x^2 - x + 10) - \log_2(5 - x)} = \log_2 8$ •⁶ X $x^2 - x + 10 - (5 - x) = 8$
 - •⁷ X not available
 - •⁸ X not available

5

3