

Definitions: Image: Scan here for the definition of a Vector • MAGNITUDE • SCALAR • VECTOR • VECTOR

i.e. Weight, A plane flies 300km on a bearing of 145° Wind velocity is 15mph southeasterly.

Vectors:

- A vector can be named in 2 ways meaning the same thing:
 - A Bold, italicised and underlined letter, \underline{u} represents Vector \underline{u}
 - \circ 2 capital letters with an arrow above, \overrightarrow{AB} , represents the Directed Line Segment AB.
- A vector can also be represented graphically as shown:

Vectors with the same components are equal vectors, regardless of their starting point, i.e.

$$\overrightarrow{AB} = \begin{pmatrix} -2\\5\\4 \end{pmatrix}, \overrightarrow{CD} = \begin{pmatrix} -2\\5\\4 \end{pmatrix}$$
 hence $\overrightarrow{AB} = \overrightarrow{CD}$

• Remember direction matters so $\overrightarrow{AB} \neq \overrightarrow{BA}$

1. Write down the components of the Vectors below:

Vector Arithmetic:

- When you add or subtract Vectors you produce another vector called the **RESULTANT VECTOR**.
- When subtracting Vectors you actually add the negative Vector, i.e. $\underline{u} \underline{v} = \underline{u} + (-\underline{v})$
- Vectors are added/subtracted using the Nose to Tail method as shown:

• Their components can be added/subtracted as follows:

If
$$\underline{\boldsymbol{u}} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
 and $\underline{\boldsymbol{v}} = \begin{pmatrix} d \\ e \\ f \end{pmatrix}$ then $\underline{\boldsymbol{u}} + \underline{\boldsymbol{v}} = \begin{pmatrix} a+d \\ b+e \\ c+f \end{pmatrix}$ and $\underline{\boldsymbol{u}} - \underline{\boldsymbol{v}} = \begin{pmatrix} a-d \\ b-e \\ c-f \end{pmatrix}$

- Multiplying a Vector by a <u>Scalar</u> looks like this: If $\underline{u} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ then $k\underline{u} = \begin{pmatrix} kx \\ ky \\ kz \end{pmatrix}$
- You <u>cannot</u> multiply a Vector by another Vector.

2. a) For the example above, state the components of the vectors \underline{u} and \underline{v} .

Find the resultant vectors given by: **b**) $\underline{u} + \underline{v}$ (**c**) $\underline{u} - \underline{v}$ (**d**) $3\underline{u}$ (**e**) $3\underline{u} + 5\underline{v}$

- a) $\underline{u} = \begin{pmatrix} 6\\ 3 \end{pmatrix}$ and $\underline{v} = \begin{pmatrix} 2\\ -4 \end{pmatrix}$ b) $\underline{u} + \underline{v} = \begin{pmatrix} 6\\ 3 \end{pmatrix} + \begin{pmatrix} 2\\ -4 \end{pmatrix}$ $= \begin{pmatrix} 8\\ -1 \end{pmatrix}$ (c) $\underline{u} - \underline{v} = \begin{pmatrix} 6\\ 3 \end{pmatrix} - \begin{pmatrix} 2\\ -4 \end{pmatrix}$ $= \begin{pmatrix} 4\\ 5 \end{pmatrix}$ (d) $3\underline{u} = 3\begin{pmatrix} 6\\ 3 \end{pmatrix}$ (e) $3\underline{u} + 5\underline{v} = 3\begin{pmatrix} 6\\ 3 \end{pmatrix} + 5\begin{pmatrix} 2\\ -4 \end{pmatrix}$
 - d) $3\underline{u} = 3\begin{pmatrix} 0\\3 \end{pmatrix}$ $= \begin{pmatrix} 18\\9 \end{pmatrix}$ $= \begin{pmatrix} 18\\9 \end{pmatrix}$ $= \begin{pmatrix} 28\\-11 \end{pmatrix}$ (e) $3\underline{u} + 5\underline{v} = 3\begin{pmatrix} 0\\3 \end{pmatrix} + 5\begin{pmatrix} 2\\-4 \end{pmatrix}$ $= \begin{pmatrix} 18\\9 \end{pmatrix} + \begin{pmatrix} 10\\-20 \end{pmatrix}$
- **3.** For the Vectors below draw the resultant Vector: **a**) $\underline{a} + \underline{b}$ (**b**) $\underline{a} \underline{b}$ (**c**) $2\underline{b}$

a)b)c) \underline{b} \underline{b} \underline{b} \underline{a} \underline{a} \underline{a} \underline{a} \underline{a} \underline{a} \underline{b} \underline{b}

4. State the components of the resultant Vectors when $\underline{m} = \begin{pmatrix} 2 \\ -4 \\ 6 \end{pmatrix}$ and $\underline{n} = \begin{pmatrix} -3 \\ 5 \\ -1 \end{pmatrix}$:

a)
$$2\underline{m} - 3\underline{n} = 2\begin{pmatrix} 2\\ -4\\ 6 \end{pmatrix} - 3\begin{pmatrix} -3\\ 5\\ -1 \end{pmatrix}$$
$$= \begin{pmatrix} 4\\ -8\\ 12 \end{pmatrix} - \begin{pmatrix} -9\\ 15\\ -3 \end{pmatrix}$$
$$= \begin{pmatrix} 13\\ -23\\ 15 \end{pmatrix}$$

(**b**)
$$\frac{1}{2}\underline{m} + \underline{n} = \frac{1}{2} \begin{pmatrix} 2\\ -4\\ 6 \end{pmatrix} + \begin{pmatrix} -3\\ 5\\ -1 \end{pmatrix}$$
$$= \begin{pmatrix} 1\\ -2\\ 3 \end{pmatrix} + \begin{pmatrix} -3\\ 5\\ -1 \end{pmatrix}$$
$$= \begin{pmatrix} -2\\ 3\\ 2 \end{pmatrix}$$

Position Vectors & Magnitude:

- A **<u>POSITION VECTOR</u>** is a Vector joining a point,
 - A(x, y, z), to the Origin, i.e. $\overrightarrow{OA} = \underline{a} = \begin{pmatrix} x \\ y \end{pmatrix}$
- У VERY important The Vector joining any 2 points, A and B, can be found using the position Vectors: $\overrightarrow{AB} =$ $\underline{b} - \underline{a}$
- The **MAGNITUDE** is written as $|\underline{u}|$ or $|\overrightarrow{AB}|$ and can be calculated using the components:

 $|\underline{u}| = \sqrt{x^2 + y^2 + z^2}$ or $|\overrightarrow{AB}| = \sqrt{x^2 + y^2 + z^2}$ For 2D simply miss out the *z* part!!

Examples:

- 5. P, Q and R are the points (3, -2, -5), (-3, -4, 5) and (-8, 6, 4) respectively.
 - a) State the components of the 3 position vectors <u>**p**</u>, <u>**q**</u> & <u>**r**</u>.

$$\underline{p} = \begin{pmatrix} 3 \\ -2 \\ -5 \end{pmatrix} \qquad \underline{q} = \begin{pmatrix} -4 \\ -3 \\ 5 \end{pmatrix} \qquad \underline{r} = \begin{pmatrix} -8 \\ 6 \\ 4 \end{pmatrix}$$

b) State the components of the vectors \overrightarrow{PR} & \overrightarrow{QP}

$$\overrightarrow{PR} = \underline{r} - \underline{p} \qquad \qquad \overrightarrow{QP} = \underline{p} - \underline{q}$$

$$\overrightarrow{PR} = \begin{pmatrix} -8\\ 6\\ 4 \end{pmatrix} - \begin{pmatrix} 3\\ -2\\ -5 \end{pmatrix} \qquad \qquad \overrightarrow{QP} = \begin{pmatrix} 3\\ -2\\ -5 \end{pmatrix} - \begin{pmatrix} -4\\ -3\\ 5 \end{pmatrix}$$

$$\overrightarrow{PR} = \begin{pmatrix} -11\\ 8\\ 9 \end{pmatrix} \qquad \qquad \overrightarrow{QP} = \begin{pmatrix} 7\\ 1\\ -10 \end{pmatrix}$$

- c) Calculate $|\overrightarrow{PR}|$ & |q|
 - $\frac{|\underline{q}|}{|\underline{q}|} = \sqrt{x^2 + y^2 + z^2}$ $\frac{|\underline{q}|}{|\underline{q}|} = \sqrt{(-4)^2 + (-3)^2 + 5^2}$ $\frac{|\underline{q}|}{|\underline{q}|} = \sqrt{16 + 9 + 25}$ $\left|\overrightarrow{PR}\right| = \sqrt{x^2 + y^2 + z^2}$ $|\overrightarrow{PR}| = \sqrt{(-11)^2 + 8^2 + 9^2}$ $\left|\overrightarrow{PR}\right| = \sqrt{121 + 64 + 81}$ $=\sqrt{50} = 5\sqrt{2}$ $\left|\overrightarrow{PR}\right| = \sqrt{266}$

Now attempt Exercise 2 & 3 from the Vectors booklet

Unit Vectors:

- A **<u>UNIT VECTOR</u>** is a vector with magnitude ONE.
- Any Vector can be expressed in terms of the Unit Vectors $\underline{i} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\underline{j} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ and $\underline{l} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$

• A <u>UNIT VECTOR</u> can be obtained from any vector by dividing each component by its magnitude:

i.e.
$$\underline{a} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
, so the unit vector of $\underline{a} = \frac{1}{|\underline{a}|} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$

Examples:

6. a) Express the vector,
$$\underline{a} = \begin{pmatrix} 2 \\ -4 \\ -8 \end{pmatrix}$$
 in terms of \underline{i} , \underline{j} , \underline{k} : $2\underline{i} - 4\underline{j} - 8\underline{k}$

b) Write the components of the vector $\underline{a} = 5\underline{i} - 3\underline{j} + 2\underline{k}$:

- c) Write the components of the vector $\underline{b} = -7\underline{i} + 11\underline{k}$:
- **d**) Calculate the magnitude of the vector $\underline{c} = 5\underline{i} + 2\underline{j} \underline{k}$

$$\underline{a} = \begin{pmatrix} 5\\ -3\\ 2 \end{pmatrix}$$
$$\underline{b} = \begin{pmatrix} -7\\ 0\\ 11 \end{pmatrix}$$
$$|\underline{c}| = \sqrt{x^2 + y^2 + y^2}$$

$$\begin{aligned} |\underline{c}| &= \sqrt{x^2 + y^2 + z^2} \\ |\underline{c}| &= \sqrt{5^2 + 2^2 + (-1)^2} \\ |\underline{c}| &= \sqrt{25 + 4 + 1} \\ |\underline{c}| &= \sqrt{30} \end{aligned}$$

- 7. Find the components of the unit vector from the vector $\underline{a} = \begin{pmatrix} 12 \\ 0 \\ -5 \end{pmatrix}$
 - $\begin{aligned} |\underline{a}| &= \sqrt{x^2 + y^2 + z^2} \\ |\underline{a}| &= \sqrt{12^2 + 0^2 + (-5)^2} \\ |\underline{a}| &= \sqrt{144 + 0 + 25} \\ |\underline{a}| &= \sqrt{169} \\ |\underline{a}| &= 13 \end{aligned}$ So the unit vector is $\frac{1}{13} \begin{pmatrix} 12 \\ 0 \\ -5 \end{pmatrix}$

Collinearity:

- As seen earlier in the STRAIGHT LINE topic, 3 points are said to be COLLINEAR, i.e. lie on a straight line if the gradient between pairs of points are equal (PARALLEL) and if one of the points is common to both Gradients, the same is true for 3D Vectors.
- A vector is **<u>PARALLEL</u>** to another vector if it is a multiple of the first one, i.e. $\underline{v} = k\underline{u}$ Direction is not important!
- We cannot find Gradients in 3D, but $\underline{v} = k\underline{u}$ is the equivalent.

Examples:

- 8. Prove that the vectors, $\underline{a} = \begin{pmatrix} 2 \\ -4 \\ -8 \end{pmatrix}$ and $\underline{b} = \begin{pmatrix} -1 \\ 2 \\ 4 \end{pmatrix}$ are parallel. $\underline{a} = \begin{pmatrix} 2 \\ -4 \\ -9 \end{pmatrix} = -2 \begin{pmatrix} -1 \\ 2 \\ 4 \end{pmatrix} = -2\underline{b} \text{ hence } \underline{a} \text{ is parallel to } \underline{b}$
- 9. a) Prove that the points A(0, -2, 5), B(4, 2, 3) and C(10, 8, 0) are collinear.

$$\overrightarrow{AB} = \underline{b} - \underline{a} \qquad \overrightarrow{BC} = \underline{c} - \underline{b}$$

$$\overrightarrow{AB} = \begin{pmatrix} 4\\2\\3 \end{pmatrix} - \begin{pmatrix} 0\\-2\\5 \end{pmatrix} \qquad \overrightarrow{BC} = \begin{pmatrix} 10\\8\\0 \end{pmatrix} - \begin{pmatrix} 4\\2\\3 \end{pmatrix}$$

$$\overrightarrow{AB} = \begin{pmatrix} 4\\4\\-2 \end{pmatrix} \qquad \overrightarrow{BC} = \begin{pmatrix} 6\\6\\-3 \end{pmatrix}$$

$$\overrightarrow{AB} = 2\begin{pmatrix} 2\\2\\-1 \end{pmatrix} \qquad \overrightarrow{BC} = 3\begin{pmatrix} 2\\2\\-1 \end{pmatrix}$$

so $3\overrightarrow{AB} = 2\overrightarrow{BC}$

so $\overrightarrow{AB} = \frac{2}{3}\overrightarrow{BC}$, Therefore \overrightarrow{AB} is parallel to \overrightarrow{BC} and since *B* is a common point, *A*, *B* & *C* are collinear.

Statement MUST be written

b) Find the ratio \overrightarrow{AB} : \overrightarrow{BC}

$$\overrightarrow{AB} = \frac{2}{3}\overrightarrow{BC} \implies \frac{\overrightarrow{AB}}{\overrightarrow{BC}} = \frac{2}{3}$$
, so $\overrightarrow{AB} : \overrightarrow{BC}$ is 2:3

10. The points P(3, 4, 7), Q(m, 6, 3) and R(-6, 1, 13) are collinear.

State the ratio in which Q divides PR and determine the value of m

$$\overrightarrow{PQ} = \underline{q} - \underline{p} \qquad \overrightarrow{QR} = \underline{r} - \underline{q}$$

$$\overrightarrow{PQ} = \begin{pmatrix} m \\ 6 \\ 3 \end{pmatrix} - \begin{pmatrix} 3 \\ 4 \\ 7 \end{pmatrix} \qquad \overrightarrow{QR} = \begin{pmatrix} -6 \\ 1 \\ 13 \end{pmatrix} - \begin{pmatrix} m \\ 6 \\ 3 \end{pmatrix}$$

$$\overrightarrow{PQ} = \begin{pmatrix} m-3 \\ 2 \\ -4 \end{pmatrix} \qquad \overrightarrow{QR} = \begin{pmatrix} -6-m \\ -5 \\ 10 \end{pmatrix} \qquad \textbf{Look at rows that only have numbers to find ratio}$$

$$\overrightarrow{so} -5\overrightarrow{PQ} = 2\overrightarrow{QR}$$
so $-5\overrightarrow{PQ} = 2\overrightarrow{QR}$
so $\overrightarrow{PQ} = -\frac{2}{5}\overrightarrow{QR} \implies \overrightarrow{PQ} = -\frac{2}{5}$, so $\overrightarrow{PQ} : \overrightarrow{QR}$ is $-2:5$
so $-5(m-3) = 2(-6-m)$
 $-5m + 15 = -12 - 2m$
 $-5m + 2m = -12 - 15$
 $-3m = -27$
 $m = 9$

Now attempt Exercise 5 from the Vectors booklet

Dividing Lines:

- A point can split a line joining 2 other points in a given ratio as follows:
- So *T* splits the line *AB* in the ratio *m* : *n*
- If we know the coordinates of 2 points we can find the third point in 2 ways:
 - Algebraically using the fact that $\overrightarrow{AB} = \underline{b} \underline{a}$
 - Or Using the SECTION FORMULA: $\underline{t} = \frac{n}{m+n}\underline{a} + \frac{m}{m+n}\underline{b}$
- The point *T* can either split the line *AB* **INTERNALLY** or **EXTERNALLY** as shown below:

 $T \qquad B$

m

Choose which

you prefer

A 🖝

11. The point *T* divides the line *AB* in the ratio 3 : 2. For the coordinates A(-4, 5, 1) & B(-24, -10, 26) find the coordinates of the point *T*.

12. The point *B* divides the line AT in the ratio 3 : 2. For the coordinates A(3, -1, 4) & B(6, -4, 1)find the coordinates of the point *T*.

Algebraically

$$2\overline{AB} = 3\overline{BT} \implies 2(\underline{b} - \underline{a}) = 3(\underline{t} - \underline{b})$$

$$\implies 2\underline{b} - 2\underline{a} = 3t - 3\underline{b}$$

$$\implies 3\underline{t} = 5\underline{b} - 2\underline{a}$$

$$3\underline{t} = 5\begin{pmatrix}6\\-4\\1\end{pmatrix} - 2\begin{pmatrix}3\\-1\\4\end{pmatrix}$$

$$3\underline{t} = \begin{pmatrix}30\\-20\\5\end{pmatrix} - \begin{pmatrix}6\\-2\\8\end{pmatrix}$$

$$3\underline{t} = \begin{pmatrix}24\\-18\\-3\end{pmatrix}$$

$$\underline{t} = \begin{pmatrix}8\\-6\\-1\end{pmatrix} \longleftarrow Components$$

So T (8, -6, -1)
$$\bigstar Coordinates$$

When the point you are finding is external the Section Formula requires more work prior to the actual calculation!!

Section Formula

This question may be worded differently as follows but would be done exactly the same way as above.

12. The point *T* divides the line *AB* <u>externally</u> in the ratio 5:2. For the coordinates A(3, -1, 4) & B(6, -4, 1) find the coordinates of the point *T*.

Now attempt Exercise 6 from the Vectors booklet

Scalar Product:

- The <u>SCALAR PRODUCT</u> is as close to multiplying vectors together as we can get!
- It is sometimes known as the **<u>DOT PRODUCT</u>** as it is written in the form: $\underline{a} \cdot \underline{b}$
- The scalar product is a measure of how closely 2 vectors align, in terms of the directions they point.
- The Scalar (or Dot) Product can be calculated in 2 ways, using the:
 - Component form: $\underline{a} \cdot \underline{b} = a_1 \times b_1 + a_2 \times b_2 + a_3 \times b_3$
 - Modulus form: $\underline{a} \cdot \underline{b} = |\underline{a}| |\underline{b}| \cos \theta$, where θ is the angle between the vectors \underline{a} and \underline{b}
- To use the Modulus form both vectors must either be moving away from or towards the angle:

Both moving away from angle

Both moving towards the angle

<u>a</u> is moving towards and <u>b</u> is moving away from the angle.

• We can rearrange the 3rd diagram to allow us to find the Dot Product:

13. Find
$$\underline{a}$$
. \underline{b} given that $\underline{a} = \begin{pmatrix} 5 \\ -3 \\ 2 \end{pmatrix}$ and $\underline{b} = \begin{pmatrix} 3 \\ 4 \\ -1 \end{pmatrix}$

$$\underline{a} \cdot \underline{b} = a_1 \times b_1 + a_2 \times b_2 + a_3 \times b_3$$

$$\underline{a} \cdot \underline{b} = 5 \times 3 + (-3) \times 4 + 2 \times (-1)$$

$$\underline{a} \cdot \underline{b} = 15 + (-12) + (-2) = 1$$

14. Find \overrightarrow{PQ} . \overrightarrow{PR} given that P(2, -4, 9), Q(3, -1, 4) & R(6, -4, 1)

$$\overrightarrow{PQ} = \underline{q} - \underline{p} \qquad \overrightarrow{PR} = \underline{r} - \underline{p}$$

$$\overrightarrow{PQ} = \begin{pmatrix} 3 \\ -1 \\ 4 \end{pmatrix} - \begin{pmatrix} 2 \\ -4 \\ 9 \end{pmatrix} \qquad \overrightarrow{PR} = \begin{pmatrix} 6 \\ -4 \\ 1 \end{pmatrix} - \begin{pmatrix} 2 \\ -4 \\ 9 \end{pmatrix}$$

$$\overrightarrow{PQ} = \begin{pmatrix} 1 \\ 3 \\ -5 \end{pmatrix} \qquad \overrightarrow{PR} = \begin{pmatrix} 4 \\ 0 \\ -8 \end{pmatrix}$$

$$\overrightarrow{PQ}.\overrightarrow{PR} = a_1 \times b_1 + a_2 \times b_2 + a_3 \times b_3$$
$$\overrightarrow{PQ}.\overrightarrow{PR} = 1 \times 4 + 3 \times 0 + (-5) \times (-8)$$
$$\overrightarrow{PQ}.\overrightarrow{PR} = 4 + 0 + 40 = 44$$

15. For each diagram below calculate \underline{a} . \underline{b} :

Now attempt Exercise 7 from the Vectors booklet

Angle Between 2 Vectors:

• We can rearrange the Scalar Product to allow us to be able to find the Angle between the 2 vectors:

$$\cos \theta = \frac{\underline{a} \cdot \underline{b}}{|\underline{a}||\underline{b}|} = \frac{a_1 \times b_1 + a_2 \times b_2 + a_3 \times b_3}{|\underline{a}||\underline{b}|}$$

16. Calculate the angle, θ , between the 2 vectors, $\underline{\mathbf{m}} = 3\underline{\mathbf{i}} + 4\underline{\mathbf{j}} - 2\underline{\mathbf{k}}$ and $\underline{\mathbf{n}} = 4\underline{\mathbf{i}} + \underline{\mathbf{j}} + 3\underline{\mathbf{k}}$

$$\underline{\boldsymbol{m}} = 3\underline{\boldsymbol{i}} + 4\underline{\boldsymbol{j}} - 2\underline{\boldsymbol{k}} \qquad \underline{\boldsymbol{n}} = 4\underline{\boldsymbol{i}} + \underline{\boldsymbol{j}} + 3\underline{\boldsymbol{k}}$$
$$\underline{\boldsymbol{m}} = \begin{pmatrix} 3\\ 4\\ -2 \end{pmatrix} \qquad \underline{\boldsymbol{n}} = \begin{pmatrix} 4\\ 1\\ 3 \end{pmatrix}$$

$$|\underline{m}| = \sqrt{x^2 + y^2 + z^2} \qquad |\underline{n}| = \sqrt{x^2 + y^2 + z^2} \\ |\underline{m}| = \sqrt{3^2 + 4^2 + (-2)^2} \qquad |\underline{n}| = \sqrt{4^2 + 1^2 + 3^2} \\ |\underline{m}| = \sqrt{9 + 16 + 4} \qquad |\underline{n}| = \sqrt{16 + 1 + 9} \\ |\underline{m}| = \sqrt{29} \qquad |\underline{n}| = \sqrt{26}$$

$\underline{m}.\underline{n} = a_1 \times b_1 + a_2 \times b_2 + a_3 \times b_3$	$\cos\theta = \frac{\underline{m}.\underline{n}}{ \underline{m} \underline{n} }$
$\underline{m}.\underline{n} = 3 \times 4 + 4 \times 1 + (-2) \times 3$	$\cos\theta = \frac{10}{\sqrt{29} \times \sqrt{26}}$
$\underline{m}.\underline{n} = 12 + 4 + (-6) = 10$	$\theta = \cos^{-1} 0.364 \dots$
	$\theta = 68.64^{\circ}$

As both vectors MUST travel in the same direction start from the outsides of the angle's name and work in! (vou can also start from the inside and work out)!!

$\overrightarrow{DE} =$	<u>e</u> – <u>d</u>	
$\overrightarrow{DE} =$	$\begin{pmatrix} -3\\ 3\\ 4 \end{pmatrix}$	$-\begin{pmatrix}2\\5\\1\end{pmatrix}$
$\overrightarrow{DE} =$	$\begin{pmatrix} -5\\ -2\\ 3 \end{pmatrix}$	= <u>a</u>

$$F\vec{E} = \underline{e} - \underline{f}$$

$$\vec{F}\vec{E} = \begin{pmatrix} -3\\3\\4 \end{pmatrix} - \begin{pmatrix} 1\\-7\\2 \end{pmatrix}$$

$$\vec{F}\vec{E} = \begin{pmatrix} -4\\10\\2 \end{pmatrix} = \underline{b}$$

_

$$|\underline{a}| = \sqrt{x^2 + y^2 + z^2} \qquad |\underline{b}| = \sqrt{x^2 + y^2 + z^2} \\ |\underline{a}| = \sqrt{(-5)^2 + (-2)^2 + 3^2} \qquad |\underline{b}| = \sqrt{(-4)^2 + 10^2 + 2^2} \\ |\underline{a}| = \sqrt{25 + 4 + 9} \qquad |\underline{b}| = \sqrt{16 + 100 + 4} \\ |\underline{a}| = \sqrt{38} \qquad |\underline{b}| = \sqrt{120}$$

$$\underline{a} \cdot \underline{b} = a_1 \times b_1 + a_2 \times b_2 + a_3 \times b_3$$
$$\underline{a} \cdot \underline{b} = (-5) \times (-4) + (-2) \times 10 + 3 \times 2$$
$$\underline{a} \cdot \underline{b} = 20 + (-20) + 6 = 6$$

$$cos \theta = \frac{\underline{a}.\underline{b}}{|\underline{a}||\underline{b}|}$$

$$cos \theta = \frac{6}{\sqrt{39} \times \sqrt{120}}$$

$$\theta = \cos^{-1} 0.0877 \dots$$

$$\theta = 84.97^{\circ}$$

Now attempt Exercise 8 from the Vectors booklet

Perpendicular Vectors:

• If vectors \underline{a} and \underline{b} are perpendicular then \underline{a} . $\underline{b} = 0$

Examples:

18. Show that vectors \underline{a} and \underline{b} are perpendicular when $\underline{a} = 3\underline{i} - 5\underline{j} + \underline{k}$ and $\underline{b} = 4\underline{i} + 3\underline{j} + 3\underline{k}$

$$\underline{a} = 3\underline{i} - 5\underline{j} + \underline{k} \qquad \qquad \underline{b} = 4\underline{i} + 3\underline{j} + 3\underline{k}$$

$$\underline{a} = \begin{pmatrix} 3 \\ -5 \\ 1 \end{pmatrix} \qquad \qquad \underline{b} = \begin{pmatrix} 4 \\ 3 \\ 3 \end{pmatrix}$$

$$\underline{a} \cdot \underline{b} = a_1 \times b_1 + a_2 \times b_2 + a_3 \times b_3$$

$$\underline{a} \cdot \underline{b} = 3 \times 4 + (-5) \times 3 + 1 \times 3$$

$$\underline{a} \cdot \underline{b} = 12 + (-15) + 3 = 0 \quad \text{Since } \underline{a} \cdot \underline{b} = 0 \quad \underline{a} \text{ is perpendicular to } \underline{b}.$$

19. Find the value of k if the direct line segments $\overrightarrow{DE} = \begin{pmatrix} 3 \\ -2 \\ k \end{pmatrix}$ and $\overrightarrow{FG} = \begin{pmatrix} -4 \\ -5 \\ 2 \end{pmatrix}$ are perpendicular.

Since
$$D\vec{E}$$
 is perpendicular to $F\vec{G}$
 $\overrightarrow{DE}.\overrightarrow{FG} = 0$
 $a_1 \times b_1 + a_2 \times b_2 + a_3 \times b_3 = 0$
 $3 \times (-4) + (-2) \times (-5) + k \times 2 = 0$
 $-12 + 15 + 2k = 0$
 $3 + 2k = 0$
 $2k = -3$
 $k = -1.5$

Now attempt Exercise 9 from the Vectors booklet

Scalar Product Properties:

• For Vectors vectors <u>a</u>, <u>b</u> and <u>c</u> the following 3 properties exist:

$$\circ \underline{a} \cdot \underline{b} = \underline{b} \cdot \underline{a}$$

$$\circ \underline{a} \cdot (\underline{b} + \underline{c}) = \underline{a} \cdot \underline{b} + \underline{a} \cdot \underline{c}$$

$$\circ \underline{a} \cdot \underline{a} = |\underline{a}|^2$$

Examples:

Adapting Known Formulae:

- The following formulae can be used in 3 Dimensions by adding a *z* part to them:
 - Distance Formula: $\sqrt{(x_B x_A)^2 + (y_B y_A)^2 + (z_B z_A)^2}$
 - Midpoint Formula: $\left(\frac{x_A + x_B}{2}, \frac{y_A + y_B}{2}, \frac{z_A + z_B}{2}\right)$

• The Position Vector of the midpoint can be found using the formula: $M = \frac{1}{2}(\underline{a} + \underline{b})$

Examples:

22. Find the coordinates of the midpoint of \overrightarrow{ST} where S (8, 3, -6) & T (-2, 7, 0)

<u>OR</u>

<u>Midpoint Formula</u>
$M = \left(rac{x_A + x_B}{2}, rac{y_A + y_B}{2}, rac{z_A + z_B}{2} ight)$
$M = \left(\frac{8+(-2)}{2}, \frac{3+7}{2}, \frac{-6+0}{2}\right)$
$M = \left(\frac{6}{2} , \frac{10}{2} , \frac{-6}{2}\right)$
M = (3, 5, -3)

Position Vector Midpoint

$$M = \frac{1}{2} \left[\begin{pmatrix} 8\\3\\-6 \end{pmatrix} + \begin{pmatrix} -2\\7\\0 \end{pmatrix} \right]$$

$$M = \frac{1}{2} \begin{pmatrix} 6\\10\\-6 \end{pmatrix} = \begin{pmatrix} 3\\5\\-3 \end{pmatrix} \leftarrow \frac{\text{Vector}}{\text{Components}}$$
$$M = (3, 5, -3)$$
$$\begin{pmatrix} \bullet \\ \text{Coordinates} \end{pmatrix}$$

Not used much in vectors!!

Vector Journeys:

- A Vector Journey is a description of the path from the beginning to the end of the vector.
- Vector Journeys can be described either by their components or by combining other vectors.

Examples:

23. a) Express the vector \overrightarrow{SU} in terms of \underline{a} and \underline{b} .

 $\overrightarrow{SU} = S \rightarrow V \rightarrow U \quad \longleftarrow \quad \text{Fist and Last} \\ = \overrightarrow{SV} + \overrightarrow{VU} \\ = \underline{a} + \underline{b}$

b) Express the vector \overrightarrow{VT} in terms of \underline{a} and \underline{b} .

$$\overrightarrow{VT} = V \to U \to T$$
$$= \overrightarrow{VU} + \overrightarrow{UT}$$
$$= \underline{b} + (-\underline{a})$$
$$= \underline{b} - \underline{a}$$

24. The shape opposite is a cuboid with a

vertex at the origin and U(4, 2, 3).

M is the midpoint of \overrightarrow{QU}

$$\overrightarrow{OP} = \underline{a}$$
, $\overrightarrow{OS} = \underline{b}$ and $\overrightarrow{PQ} = \underline{c}$

- a) State the coordinates of the points
 - (i) P(4, 0, 0)
 - (ii) V(0, 2, 3)
 - (iii) M (4, 2, 1.5)

b) Express the vector \overrightarrow{QS} in terms of \underline{a} , \underline{b} and \underline{c}

 $\overrightarrow{QS} = Q \rightarrow U \rightarrow V \rightarrow S$ $\overrightarrow{QS} = \overrightarrow{QU} + \overrightarrow{UV} + \overrightarrow{VS}$ $\overrightarrow{QS} = \underline{b} + (-\underline{a}) + (-\underline{c})$ $\overrightarrow{QS} = \underline{b} - \underline{a} - \underline{c}$

c) Express the vector \overrightarrow{SM} in terms of \underline{a} , \underline{b} and \underline{c}

 $\overrightarrow{SM} = S \to T \to U \to M$ $\overrightarrow{SM} = \overrightarrow{ST} + \overrightarrow{TU} + \overrightarrow{UM}$ $\overrightarrow{SM} = \underline{a} + \underline{c} + \frac{1}{2}(-\underline{b})$ $\overrightarrow{SM} = \underline{a} + \underline{c} - \frac{1}{2}\underline{b}$