

Transformations:

- There are 3 types of **TRANSORMATIONS** which can be applied to any Graph:.
 - > A **TRANSLATION** moves every point on a graph the same amount in a specific direction.
 - > A **<u>REFLECTION</u>** "flips" the graph about one of the axis.
 - > A <u>SCALING</u> stretches or compresses the graph in a specific direction.
- Each transformation can be applied vertically or horizontally depending where it's stated in the function:
 - If the transformation is <u>INSIDE</u> the bracket it is a <u>HORIZONTAL</u> movement and affects the graph in the <u>OPPOSITE</u> manner than first thought!!!!
 - If the transformation is <u>OUTSIDE</u> the bracket it is a <u>VERTICAL</u> movement and affects the graph in the normal way!!!

Translations:

• There are 2 types of **TRANSLATIONS** which can be applied to a Graph:

➢ Horizontally: f(x + a) This will cause the graph to move parallel to the *x*-axis; to the <u>LEFT</u> if *a* > 0 and <u>RIGHT</u> if *a* < 0 ← Opposite from the way you think!!

➤ Vertically: f(x) + a This will cause the graph to move parallel to the y-axis;

 UP if a > 0 and DOWN if a < 0

 Only the y-coordinate will change.

Examples:

You must annotate the graph by marking in ALL the given points on the new graph to gain full marks!!!

b)
$$y = f(x) - 5$$

Outside the brackets so
shift the Graph DOWN 5
 $(-3, 0) \rightarrow (-3, -5)$
 $(0, 8) \rightarrow (0, 3)$
 $(4, 0) \rightarrow (4, -5)$
 $(6, -2) \rightarrow (6, -7)$
 $(7, 0) \rightarrow (7, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$
 $(-3, -5)$

2. Sketch the following graphs:

Remember to annotate the graph by marking in ALL the given points on the new graph to gain full marks!!!

Now attempt Exercise 2 from the Graphs of Functions booklet

Reflections:

• There are 2 types of **<u>REFLECTIONS</u>** which can be applied to a Graph:.

x - axis:	-f(x)	Reflects the graph in the <i>x</i> -axis. Changes the signs of all the <i>y</i> -coordinates, <i>x</i> stays the same!
y – axis:	<i>f</i> (– <i>x</i>)	Reflects the graph in the <i>y</i> -axis. Changes the signs of all the <i>x</i> -coordinates, <i>y</i> stays the same!

Examples:

3. a) Sketch the following graphs:

$$y = -f(x)$$

Outside the bracket so reflect the Graph in the <u>*x*-axis</u>

A point (a, b) will become (a, -b) when reflected in the x-axis. Points on the x-axis stay the same.

Now attempt Exercise 3 from the Graphs of Functions booklet

Scaling:

• There are 2 types of <u>SCALINGS</u> which can be applied to a Graph:.

➢ Vertically: kf(x) This will cause the <u>HEIGHT</u> of the graph to be changed as follows: <u>STRETCHED</u> if *k* > 1 or <u>COMPRESSED</u> if 0 < *k* < 1 Only the *y*-coordinate will change by multiplying it by *k*.

Examples:

4. Sketch the following graphs:

Now attempt Exercise 4 from the Graphs of Functions booklet

5. Sketch the following graphs:

a)
$$y = 3f(x)$$

Outside the bracket so STRETCH
the Graph vertically by a factor of 3

y = f(x)-3 4 7 (6, -2)

 $\begin{array}{rcrcr} (-3\,,0) & \to & (-6\,,0) \\ (0\,,8) & \to & (0\,,24) \\ (4\,,0) & \to & (4\,,0) \\ (6\,,-2) & \to & (6\,,-6) \\ (7\,,0) & \to & (7\,,0) \end{array}$

The x-coordinate stays the same!!

Now attempt Exercise 5 from the Graphs of Functions booklet

Examples - Related Trig Graphs:

- Remember <u>Sine, Cosine & Tangent</u> graphs we can apply the transformations looked at above to
 produce related Trig graphs in the same way.
- Trig graphs will usually be sketched between zero and 360°
 - **6.** Sketch the following graphs:

Notice that the graph of y = sin(-x) above would be the same as the graph of y = -sinx (reflected in *x*-axis. This means that we can write sin(-x) = -sinx. We will see more of this later in the course.

Examples - Combined Questions:

- Usually you are asked to sketch a graph with 2 (or more) transformations.
- Do any Scaling and Reflections first then do the Translations.
 - 7. Sketch the following graphs:

Now attempt Exercise 7 from the Graphs of Functions booklet

Examples - Related Exponential & Logarithmic Graphs:

• Remember **<u>EXPONENTIAL</u>** graphs, $y = a^x$, always pass through the points: (0, 1) & (1, a)

- Remember **LOGARITHMIC** graphs, $y = Log_a x$, always pass through the points: (1, 0) & (a, 1)
 - 9. The graph of $y = Log_3 x$, is shown below, sketch the graphs of: $y = Log_3 x$ (3,1) a) $y = Log_3 \mathcal{X} + 2$ $y = Log_3(X - 5)$ b) Shift the Graph UP 2 **(b)** Shift the Graph **<u>RIGHT</u>** 5 a) $y = \text{Log}_3(x - 5)$ $y = \mathrm{Log}_3 \mathcal{X} + 2$ (8,1) (3,3) (1,2) x = 5New ASYMPTOTE (1, 0)(1, 2) (3, 1) (3,3) (1, 0) \rightarrow (6,0) \rightarrow (3, 1)(8,1) \rightarrow

Examples - Finding Related Graph Equations:

- You may also be given the Graph and asked to find the equation of the curve.
 - **10.** For the graph opposite find the values of *a* and *b* and then state the curves equation.

11. For the graph opposite find the values of *a* and *b* and then state the curves equation.

12. For the graph opposite find the values of *a*, *b*, *c* and *d* and then state the curves equation.

a is half the height of the graph, so:*b* is the number of cycles between 0 & 360, so:*d* is how much it has been shifted vertically, so:*c* is how much it has been shifted horizontally:

$$a = 4$$
$$b = 3$$
$$d = 2$$

Sin graph is at its maximum at 90° So sin3x is at its maximum at 30° This curve is at its maximum at 10° So it has been shifted 20° to the left, so $c = 20^{\circ}$

So $y = 4\sin(3x + 20^\circ) + 2$

Now attempt Exercise 8 from the Graphs of Functions booklet