Further Calculus SPTA Mathematics - Higher Notes

Differentiation – Remember:

- $f(x) = ax^n \implies f'(x) = anx^{n-1}$ where *n* is a rational number.
- *y* is the same as f(x) and $\frac{dy}{dx}$ is the same as f'(x).
- The Derivative of a constant is zero.
- Prior to Differentiating a function the following must be true:
 - \circ Until now all brackets needed to be multiplied out. \checkmark
 - Roots need to be changed to powers: $\sqrt[m]{x^n} = x^{n/m}$
 - x cannot appear in the denominator of a fraction: $\frac{a}{bx^n} = \frac{a}{b}x^{-n}$
- After Differentiating it is good practice to return the expression to the form the question gave it in.

Chain Rule:

- The CHAIN RULE is a method of Differentiating composite functions.
- We usually concentrate on functions in the form: $y = (f(x))^n \implies \frac{dy}{dx} = n(f(x))^{n-1} \times f'(x)$
- A simple way of thinking about the Chain Rule is:
 "Differentiate outside the bracket multiplied by the derivative of inside the bracket"

Examples:

- **1.** Differentiate the following with respect to *x*
 - a) $y = (7x^2 3x + 5)^5$

$$\frac{dy}{dx} = 5 \times (7x^2 - 3x + 5)^4 \times (14x - 3)$$

$$\frac{dy}{dx} = 5(14x - 3)(7x^2 - 3x + 5)^4$$

b)
$$f(x) = \frac{1}{(4x+5)^2}, x > 0$$
 $f(x) = (4x+5)^{-2} \implies f'(x) = -2 \times (4x+5)^{-3} \times 4$
 $\implies f'(x) = \frac{-8}{(4x+5)^3}$

We will see below that this is not always true!!

c)
$$y = \sqrt[4]{(2x-8)^3}, x \neq -4$$
 $y = (2x-8)^{3/4}$ $\frac{dy}{dx} = \frac{3}{4} \times (2x-8)^{-1/4} \times 2$
 $\frac{dy}{dx} = \frac{3}{2} \times \frac{1}{(2x-8)^{1/4}}$
 $\frac{dy}{dx} = \frac{3}{2\sqrt[4]{(2x-8)}}$

Now attempt Exercise 1 from the Further Calculus booklet.

- Differentiating gives the <u>**Rate of Change**</u> or <u>**GRADIENT**</u> of a curve at the point x = a.
- Before substituting in a value for *x*:
 - Express all negative powers as positive powers: $\frac{a}{b}x^{-n} = \frac{a}{bx^n}$
 - Express all fractional powers as roots: $ax^{n/m} = a\sqrt[m]{x^n}$

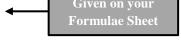
Examples:

- 2. Calculate the Rate of Change of $f(x) = \sqrt{(2x+7)^3}$ at the point x = -1:
 - $f(x) = (2x+7)^{3/2} \qquad f'(x) = \frac{3}{2} \times (2x+7)^{1/2} \times 2 \qquad f'(-1) = 3\sqrt{(2(-1)+7)}$ $f'(x) = 3\sqrt{(2x+7)} \qquad = 3\sqrt{5}$
- 3. Find the equation of the Tangent to the curve $y = 6\sqrt[3]{(2x+2)^2}$ when x = 3
 - $y = 6(2x + 2)^{2/3}$ so when x = 3

<u>POINT</u>	<u>GRADIENT</u>	EQUATION
$y = 6\sqrt[3]{(2(3)+2)^2}$	$\frac{dy}{dx} = 6 \times \frac{2}{3} \times (2x+2)^{-1/3} \times 2$	y-b=m(x-a)
$y = 6\sqrt[3]{8^2}$	$\frac{dy}{dx} = \frac{8}{\sqrt[3]{2x+2}}$	y - 24 = 4(x - 3)
$y = 6 \times 4 = 24$	$\frac{dy}{dx} = \frac{8}{2}$ so m = 4	y - 24 = 4x - 12
Pt (3, 24)		y = 4x + 12

Differentiating Trig Functions:

- $y = \sin \theta \implies \frac{dy}{d\theta} = \cos \theta$
- $y = \cos \theta \implies \frac{dy}{d\theta} = -\sin \theta$



 For these results to be valid the angle <u>must</u> be measured in <u>RADIANS</u>. This is why we usually use *θ* rather than *x*

Examples:

- 4. Differentiate the following with respect to θ :
 - **a**) $y = 5\sin\theta$ $\frac{dy}{d\theta} = 5\cos\theta$
 - **b**) $f(x) = 3\sin\theta + 2\cos\theta$ $f'(x) = 3\cos\theta 2\sin\theta$

Now attempt Exercise 3A from the Further Calculus booklet.

Chain Rule for Trig:

- Remember that $y = \sin^n \theta$ actually means $y = (\sin \theta)^n$, similarly for cos so we can use the Chain Rule!
- The Chain Rule can also be used for Differentiating Trig Functions as follows:

$$y = \sin(a\theta + b) \implies \frac{dy}{dx} = a\cos(a\theta + b)$$

$$y = \cos(a\theta + b) \implies \frac{dy}{dx} = -a\sin(a\theta + b)$$

Examples:

5. Differentiate the following with respect to *x* :

a)
$$f(x) = 3\cos 5\theta$$
 $f(x) = 3\cos(5\theta)$ $f'(x) = -3\sin(5\theta) \times 5$
 $f'(x) = -15\sin 5\theta$

b)
$$f(x) = 2\sin^6\theta$$
 $f(x) = 2(\sin\theta)^6$ $f'(x) = 6 \times 2(\sin\theta)^5 \times \cos\theta$

$$f'(x) = 12\sin^5\theta\cos\theta$$

c)
$$y = \sin\left(7\theta + \frac{\pi}{3}\right)$$
 $\frac{dy}{dx} = \cos\left(7\theta + \frac{\pi}{3}\right) \times 7$
 $\frac{dy}{dx} = 7\cos\left(7\theta + \frac{\pi}{3}\right)$

6. Find
$$f'(x)$$
 when $f(x) = \frac{1-x\cos x}{3x}$

$$f(x) = \frac{1-x\cos x}{3x} \qquad f'(x) = -\frac{1}{3}x^{-2} - \left(-\frac{1}{3}\sin x\right)$$

$$f(x) = \frac{1}{3x} - \frac{x\cos x}{3x} \qquad f'(x) = -\frac{1}{3x^2} + \frac{1}{3}\sin x$$

$$f(x) = \frac{1}{3}x^{-1} - \frac{1}{3}\cos x$$
Split into separate fractions before Differentiating, but no need to return to a single fraction unless asked to do so!!

7. For the function $y = 3\sin^2 \theta - 2\cos 3\theta$ find $\frac{dy}{d\theta}$ when $\theta = \frac{\pi}{6}$ expressing your answer as a single fraction.

$$y = 3(\sin\theta)^2 - 2\cos(3\theta)$$

$$6\sin\frac{\pi}{6}\cos\frac{\pi}{6} + 6\sin 3\left(\frac{\pi}{6}\right)$$

$$= 6 \times \frac{1}{2} \times \frac{\sqrt{3}}{2} + 6\sin\left(\frac{\pi}{2}\right)$$

$$= 6 \times \frac{1}{2} \times \frac{\sqrt{3}}{2} + 6 \times 1$$

$$= \frac{3\sqrt{3}}{2} + 6$$

$$= \frac{3\sqrt{3}}{2} + \frac{6}{1}$$

$$= \frac{3\sqrt{3} + 12}{2}$$
Must know the 2
exact value triangles
and 3 Trig graphs!

• $\int ax^n dx = \frac{ax^{n+1}}{n+1} + c$ where c is the constant of integration.

- The Integral of a constant is *x*.
- Prior to Integrating a function the following must be true:
 - Until now all brackets needed to be multiplied out. ←
 - Roots need to be changed to fractional powers: $\sqrt[m]{x^n} = x^{n/m}$
 - x cannot appear in the denominator of a fraction: $\frac{a}{hx^n} = \frac{a}{h}x^{-n}$
- After Integrating it is good practice to return the expression to the form the question gave it in.

A Special Integral:

• A function in the form $y = (ax + b)^n$ can be integrated as follows: $\int (ax + b)^n dx = \frac{(ax+b)^{n+1}}{a(n+1)} + c$

Examples:

- **8.** Integrate the following:
 - a) $\int (4x-7)^4 dx = \frac{(4x-7)^5}{4\times 5} + c$ $= \frac{(4x-7)^5}{20} + c$ b) $\int \frac{6}{\sqrt[3]{3x+2}} dx$, x > 0 $\int 6(3x+2)^{-1/3} dx = \frac{6(3x+2)^{2/3}}{2/3\times 3}$ $= \frac{6^3\sqrt{(3x+2)^2}}{2}$

Now attempt Exercise 4 Qu 1 & 2 from the Further Calculus booklet.

- Integrating gives the <u>Area Under the Curve</u>. These are called <u>DEFINITE INTEGRALS</u>.
- Before substituting in a value for *x*:
 - Express all negative powers as positive powers: $\frac{a}{b}x^{-n} = \frac{a}{bx^n}$
 - Express all fractional powers as roots: $ax^{n/m} = a^m \sqrt{x^n}$

We will see below that this is not always true!!

 $=3\sqrt[3]{(3x+2)^2}$

Examples:

Now attempt Exercise 4 Qu 3 from the Further Calculus booklet.

Integrating Trig Functions:

• Trig Functions can be Integrated as follows:

$$\circ \int \sin(ax+b) dx = -\frac{1}{a}\cos(ax+b) + c$$

$$\circ \int \cos(ax+b) dx = \frac{1}{a}\sin(ax+b) + c$$
Given on your
Formulae Sheet

• Again, for these results to be valid the angle **<u>must</u>** be measured in **<u>RADIANS</u>**.

Examples:

10. Integrate the following:

a)
$$\int \sin(3x-1) dx = -\frac{1}{3}\cos(3x-1) + c$$

b)
$$\int 3\cos\left(\frac{3}{4}x+2\right) dx$$

= $3\sin\left(\frac{3}{4}x+2\right) \div \frac{3}{4} + c$
= $3 \times \frac{4}{3}\sin\left(\frac{3}{4}x+2\right) + c$
= $4\sin\left(\frac{3}{4}x+2\right) + c$

c)
$$\int 5\cos 2x + \sin(x - \sqrt{3}) dx = \frac{1}{2} \times 5\sin 2x - \cos(x - \sqrt{3}) + c$$

= $\frac{5}{2}\sin 2x - \cos(x - \sqrt{3}) + c$

Now attempt Exercise 5 Qu 1 & 2 from the Further Calculus booklet.

- We cannot Integrate Trig functions in the forms below without first using an <u>ADDITION</u> <u>FORMULAE</u> expansion:
 - $\circ \quad \int \sin^2\theta \, d\theta \ or \quad \int \cos^2\theta \, d\theta$
 - $\int \sin \theta \cos \theta \, d\theta$ or a similar **<u>PRODUCT</u>** of Trig expressions
- The Addition Formulae expansions are:
 - $\circ \quad \sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$
 - $\circ \quad \cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$
 - $\circ \quad \sin 2A = 2 \sin A \cos A$
 - $\circ \quad \cos 2A = \cos^2 A \sin^2 A$
 - $\circ \quad \cos 2A = 2\cos^2 A 1$
 - $\circ \quad \cos 2A = 1 2\sin^2 A$

Examples:

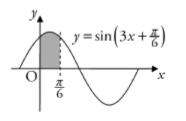
11. a) $\int 5\cos^2 x \, dx$ $\cos 2x = 2\cos^2 x - 1$ $= \int 5\left(\frac{1}{2}\cos 2x + \frac{1}{2}\right) dx$ $\cos 2x + 1 = 2\cos^2 x$ $= \int \frac{5}{2}\cos 2x + \frac{5}{2} dx$ $\cos^2 x = \frac{1}{2}\cos 2x + \frac{1}{2} \sin 2x + \frac{5}{2}x + c$ $= \frac{5}{4}\sin 2x + \frac{5}{2}x + c$ **b**) $\int \sin x \cos x \, dx$

 $\sin 2x = 2\sin x \cos x$

$$\frac{1}{2}\sin 2x = \sin x \cos x$$

 $= \int \frac{1}{2} \sin 2x \, dx$ $= \frac{1}{2} \times -\frac{1}{2} \cos 2x + c$ $= -\frac{1}{4} \cos 2x + c$

12. Find this shaded area:





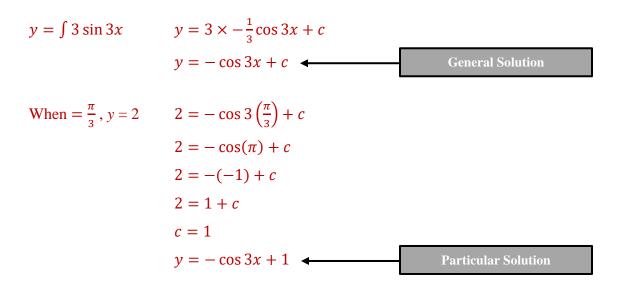
Now attempt Exercise 5 Qu 3 & 4 from the Further Calculus booklet.

Differential Equations – Remember:

- A Differential Equation is any equation which contains $\frac{dy}{dx}$ or f'(x) e.g. $\frac{dy}{dx} = 4x 5$
- In Higher we only consider first order differential equations.
- To solve a Differential Equation we Integrate to find the General Solution which involves +*c*.
- With more information, such as a point we can find the Particular Solution not involving *c*.

Examples:

13. Find the Particular Solution of the Differential Equation $\frac{dy}{dx} = 3 \sin 3x$ given that y = 2 when $x = \frac{\pi}{3}$



Now attempt Exercise 6 – 8 from the Further Calculus booklet.