

1	■ Express $5\cos x^{\circ} - 12\sin x^{\circ}$ in the form $k\sin(x + \alpha)^{\circ}$ where k > 0 and 0 ≤ x ≤ 360	(4)
2	. (a) Express $\sqrt{3}\cos x - \sin x$ in the form $k\cos(x + a)$ where $k > 0$ and $0 \le x \le 360$	(4)
	(b) Hence solve the equation $\sqrt{3}\cos x - \sin x = -1$ for $0 \le x \le 360$	(3)
3	• What is the maximum value of the function:	
J	$f(\theta) = \cos\theta^\circ - \sin\theta^\circ (0 \le \theta \le 360)$	
	$1(0) = 0030^{\circ} = 3110^{\circ} (0 \le 0 \le 300)^{\circ}$	
	and the corresponding value of θ ?	(6)
4	(a) Express $\sqrt{5}\cos x + 2\sin x$ in the form $k\sin(x + a)$ where $k > 0$ and $0 \le a \le 360$	(4)

- (b) Hence write down the maximum value of 2 + V5cosx + 2sinx and the corresponding value of x in the range $0 \le x \le 360$. (2)
- 5. If f(x) = 5sinx 6cos x

- (a) Show that f(x) can be expressed in the form ksin($x \alpha$) where k > 0 and $0 \le \alpha \le 2\pi$, stating the values of α and k. (4)
- (b) Working in the interval $0 \le x \le 2\pi$, find the maximum and minimum values of the function and find the values of x at which they occur. (4)